Archives of Microbiology

, Volume 147, Issue 1, pp 92–99 | Cite as

The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen., nov. sp. nov.

  • B. Rothe
  • A. Fischer
  • P. Hirsch
  • M. Sittig
  • E. Stackebrandt
Original Papers


Blastobacter aggregatus and a Blastobacter-like isolate (IFAM 1031) were analysed by the 16S ribosomal RNA cataloguing approach in order to determine their phylogenetic position. Both phenotypical similar organisms are members of the alpha-subdivision of purple phototrophic bacteria and their non-phototrophic relatives but they are not closely related: B. aggregatus clusters with Agrobacterium tumefaciens and Rhizobium species; the unnamed strain displays a moderate relationship to members of Rhodobacter and Paracoccus denitrificans, with which is shares the character of a nicked 23S rRNA. Although the budding isolate IFAM 1031 resembles members of Blastobacter phenotypically, in the broad DNA G+C content and in the fatty acid pattern, a unique set of characters was found which allows description of the isolate as the typus of a new genus for which Gemmobacter gen. nov. is proposed, with G. aquatilis sp. nov. as the type species. G. aquatilis harbors at least two plasmids of different size and unknown function.

Key words

Gemmobacter gen. nov. Gemmobacter aquatilis sp. nov. Blastobacter Blastobacter aggregatus Phylogeny Taxonomy 16S rRNA cataloguing Fatty acids Plasmids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook of habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 863–893Google Scholar
  2. Auran TB, Schmidt EL (1972) Similarities between Hyphomicrobium and Nitrobacter with respect to fatty acids. J Bacteriol 109:450–451Google Scholar
  3. Bernt E, Gutmann I (1974) Äthanol. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1457–1460Google Scholar
  4. Biebl H, Pfennig H (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 267–273Google Scholar
  5. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant DNA. Nucl Acids Res 6:1513–1523Google Scholar
  6. Buchanan RE, Gibbons NE (1974) Budding and/or appendaged bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 148–166Google Scholar
  7. Carter RN, Schmidt JM (1976) Fatty acid composition of selected prosthecate bacteria. Arch Microbiol 110:91–94Google Scholar
  8. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49:25–68Google Scholar
  9. Constantopoulos G, Bloch K (1967) Isolation and characterization of glycolipids from some photosynthetic bacteria. J Bacteriol 93:1788–1793Google Scholar
  10. De Smedt J, De Ley J (1977) Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 27:222–240Google Scholar
  11. Dunkelblum E, Tan SH, Silk PJ (1985) Double bond location in monounsaturated fatty acids by dimethyldisulphide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277Google Scholar
  12. Eckhardt FEW, Roggentin P, Hirsch P (1979) Fatty acid composition of various hyphal budding bacteria. Arch Microbiol 120:81–85Google Scholar
  13. Fischer A, Roggentin T, Schlesner H, Stackebrandt E (1985) 16S ribosomal RNA oligonucleotide cataloguing and the phylogenetic position of Stella humosa. Syst Appl Microbiol 6:43–47Google Scholar
  14. Fox GE, Stackebrandt E (1987) The application of 16S rRNA cataloguing and 5S rRNA sequencing in bacterial systematics. In: Colwell RR (ed) Methods in microbiology, vol 19. Academic Press, London New York (in press)Google Scholar
  15. Fox GE, Pechman KR, Woese CR (1977) Comparative cataloguing of 16S ribosomal ribonucleic acid. Molecular approach to prokaryotic systematics. Int J Syst Bacteriol 27:44–57Google Scholar
  16. Gebers R, Mandel M, Hirsch P (1981) Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium ssp. Zbl Bakt Hyg I Abt Orig C2:332–338Google Scholar
  17. Gibson J, Stackebrandt E, Zablen LB, Gupta R, Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3:59–64Google Scholar
  18. Hennecke H, Kaluza K, Thony B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348Google Scholar
  19. Hirsch P, Müller M (1985) Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov. and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst Appl Microbiol 6:261–286Google Scholar
  20. Hohorst HJ (1974) Lactatdehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1425–1429Google Scholar
  21. Holz G, Bergmeyer HU (1974) Acetat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1480–1490Google Scholar
  22. Kado CJ, Liu S-T (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373Google Scholar
  23. Kraft I, Bock E (1984) Plasmids in Nitrobacter. Arch Microbiol 140:79–82Google Scholar
  24. Larebeke N van, Genetello TH, Hernalsteens JP, De Picker A, Zaenen I, Nessens E, Montagu N van, Schell J (1977) Transfer of the T1 plasmids between Agrobacterium strains by mobilisation with the conjugative plasmid RP4. Mol Gen Genetics 152:119–124Google Scholar
  25. Loginova NV, Trotsenko YuA (1979) Blastobacter viscosus, a new species of methanol utilizing facultatively autotrophic bacteria. Mikrobiologiya 48:785–791 (transl. 644–651)Google Scholar
  26. Mandel M, Marmur J (1968) Use of ultraviolett absorbance temperature profile for determining the guanine plus cytosine content of DNA. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 12B. Academic Press, London, pp 195–206Google Scholar
  27. Maniatis T, Fitsch EF, Sambrock J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor LaboratoryGoogle Scholar
  28. Marmur J (1961) A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208Google Scholar
  29. Marrs B, Kaplan S (1970) 23S precursor ribosomal DNA of Rhodopseudomonas sphaeroides. J Mol Biol 49:297–317Google Scholar
  30. Moore RL (1977) Ribosomal ribonucleic acid cistron homologies among Hyphomicrobium and various other bacteria. Can J Microbiol 23:478–482Google Scholar
  31. Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Meth 5:49–55Google Scholar
  32. Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek J Microbiol 49:429–446Google Scholar
  33. Rhuland LE, Work E, Denman RF, Hoare DS (1955) The behavior of the isomers of ɛ-diaminopimelic acid on paper chromatographs. J Americ Chem Soc 77:4844–4846Google Scholar
  34. Seewaldt E, Schleifer KH, Bock E, Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131:287–290Google Scholar
  35. Sly LI (1985) Emendation of the genus Blastobacter Zavarzin Syst Bacteriol 35:40–45Google Scholar
  36. Stackebrandt E, Ludwig W, Schleifer KH, Gross HJ (1981) Rapid cataloguing of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J Mol Evol 17:227–236Google Scholar
  37. Stackebrandt E, Ludwig W, Fox GE (1985) 16S ribosomal RNA oligonucleotide sequencing. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, London New York, pp 75–107Google Scholar
  38. Stackebrandt E, Fischer A, Hirsch P, Roggentin T, Schlesner H (1986) The phylogeny of an ancient group of budding peptidoglycan-less eubacteria: the genera Planctomyces and Pirella. Endocyt Cell Res 3:29–40Google Scholar
  39. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium, new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942Google Scholar
  40. Traub P, Mizushima S, Lowry CV, Nomura (1971) Reconstitution of ribosomes from subribosomal components. In: Grossman L, Moldave K (eds) Methods in enzymology, vol XX, C. Academic Press, London New York, pp 391–407Google Scholar
  41. Truffaut E, Sebald M (1983) Plasmid detection and isolation in strains of Clostridium acetobutylicum and related species. Mol Gen Genet 189:178–180Google Scholar
  42. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 15:315–326Google Scholar
  43. Wood BJB, Nichols BW, James AT (1965) The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta 106:261–273Google Scholar
  44. Zablen L, Woese CR (1975) Prokaryote phylogeny. IV. Concerning the phylogenetic status of a photosynthetic bacterium. J Mol Evol 5:25–34Google Scholar
  45. Zavarzin GA (1961) Budding bacteria. Microbiologiya 30:952–975Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • B. Rothe
    • 1
  • A. Fischer
    • 1
  • P. Hirsch
    • 1
  • M. Sittig
    • 1
  • E. Stackebrandt
    • 1
  1. 1.Institut für Allgemeine MikrobiologieChristian-Albrechts-UniversitätKielGermany

Personalised recommendations