Archives of Microbiology

, Volume 147, Issue 1, pp 80–87 | Cite as

Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats

  • S. J. Giovannoni
  • N. P. Revsbech
  • D. M. Ward
  • R. W. Castenholz
Original Papers

Abstract

Microbial mats which lack cyanobacteria occur at 50° to 65° C in the sulfide-containing Mammoth Springs of Yellowstone National Park. The principal organisms within these mats are filamentous bacteria which resemble Chloroflexus aurantiacus. The incorporation of [14C]-HCO3-into mat material depended upon both light and sulfide, and was not inhibited when complete natural light was replaced with far-red and infra-red radiation. [14C]-acetate was incorporated in a light-dependent reaction which was stimulated by, but did not require, sulfide. In situ experiments with microelectrodes demonstrated net sulfide uptake by the mat in the light, and net sulfide production by the mat in the dark, suggesting the operation of a sulfur cycle.

Filamentous phototrophic bacteria isolated from the mat were incapable of sustained growth in the presence of O2.

Simultaneous exposure of cultures to light and O2 caused degradation of bacteriochlorophyll c. The stimulation of light-dependent [14C]-HCO3--uptake by sulfide was more pronounced in these isolates than in strains of Chloroflexus aurantiacus.

Key words

Chloroflexus aurantiacus Bacteriochlorophyll Precambrian Primary productivity Hot spring Sulfur cycle Microbial mats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awramik SM, Schopf JW, Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20:357–374Google Scholar
  2. Bauld J, Brock TD (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Arch Mikrobiol 92:267–284Google Scholar
  3. Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG, Whitton BA (eds) The biology of the blue-green algae. University of California Press, Berkeley Los Angeles, pp 487–500Google Scholar
  4. Castenholz RW (1973) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Oceanogr 18:863–876Google Scholar
  5. Castenholz RW (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68Google Scholar
  6. Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105Google Scholar
  7. Castenholz RW, Pierson BK (1981) Isolation of members of the family Chloroflexaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 290–298Google Scholar
  8. Cline JD (1969) Spectrophotometric determination of sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  9. Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861Google Scholar
  10. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luersen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463Google Scholar
  11. Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629Google Scholar
  12. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3 B. Academic Press, New York, pp 117–132Google Scholar
  13. Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784Google Scholar
  14. Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154Google Scholar
  15. Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84Google Scholar
  16. Paschinger H, Paschinger J, Gaffron H (1974) Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 96:341–351Google Scholar
  17. Pfennig N, Widdel F (1982) The bacteria of the sulphur cycle. Trans Roy Soc Lond B 298:433–441Google Scholar
  18. Pierson BK, Castenholz RW (1974a) A phototrophic gliding bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24Google Scholar
  19. Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305Google Scholar
  20. Revsbech NR, Jørgensen BB (1986) Microelectrodes: Their use in microbial ecology. In: Marshall KC (ed) Advances in microbial ecology, vol 9. Plenum, New York, pp 293–352Google Scholar
  21. Revsbech NP, Ward DM (1983) Oxygen microelectrode that is insensitive to medium chemical composition; use in an acid microbial mat dominated by Cyanidium caldarium. Appl Environ Microbiol 45:755–759Google Scholar
  22. Revsbech NP, Ward, DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275Google Scholar
  23. Rozonova EP, Khudyakova AI (1974) A new nonsporulating thermophilic organism: Desulfovibrio thermophilus nov. sp. reducing sulfate. Microbiology (USSR) 43:908–912Google Scholar
  24. Sandbeck KA, Ward DM (1981) Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats. Appl Environ Microbiol 41:775–782Google Scholar
  25. Sandbeck KA, Ward DM (1982) Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone Park and Icelandic hot spring microbial mats. Appl Environ Microbiol 44:844–851Google Scholar
  26. Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth's earliest biosphere, its origin and evolution. Princeton University Press, Princeton NJ, pp 214–239Google Scholar
  27. Schopf JW, Hayes JM, Walter MR (1983) Evolution of the Earth's earliest ecosystems: recent progress and unsolved problems. In: Schopf JW (ed) Earth's earliest biosphere, it origin and evolution. Princeton University Press, Princeton NJ, pp 361–384Google Scholar
  28. Sirevåg R (1975) Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum. Arch Microbiol 104:105–111Google Scholar
  29. Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11Google Scholar
  30. Sprague SG, Staehelin LA, Fuller RC (1981) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1032–1039Google Scholar
  31. Ward DM (1978) Thermophilic methanogenesis in a hot-spring algal-bacterial mat (71 to 30°C). Appl Environ Microbiol 35:1019–1026Google Scholar
  32. Ward DM, Beck E, Revsbech NP, Sandbeck KA, Winfrey MR (1984) Decomposition of hot spring microbial mats. In: Cohen Y, Castenholz RW, Havorson HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 191–214Google Scholar
  33. Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K and Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis:isolation and characterization of Thermodesulfotobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. J. Giovannoni
    • 1
  • N. P. Revsbech
    • 2
  • D. M. Ward
    • 3
  • R. W. Castenholz
    • 4
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.Institute of Ecology and GeneticsUniversity of AarhusAarhus cDenmark
  3. 3.Department of MicrobiologyMontana State UniversityBozemanUSA
  4. 4.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations