Advertisement

Archives of Microbiology

, Volume 147, Issue 1, pp 13–20 | Cite as

Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen

  • G. Zellner
  • C. Alten
  • E. Stackebrandt
  • E. Conway de Macario
  • J. Winter
Original Papers

Abstract

A new mesophilic, monotrichously flagellated methane-producing coccus of ≦1μm in diameter was isolated from an anaerobic sour whey digester, originally inoculated with sewage sludge. Growth and methane production were observed with H2/CO2, formate and — less effectively — with 2-propanol/CO2. The isolate grew at temperatures between 15° C and 45° C with the optimum at around 37° C. Acetate, yeast extract and tungstate were required in the medium. Clarified rumen fluid stimulated growth.

The DNA of the new methanogen has a G+C content of 48.5 mol%. Comparative 16 S rRNA oligonucleotide cataloguing allows to define the new isolate as a member of a new genus of the order Methanomicrobiales. Further evidence for this is provided by the antigenic crossreactivity with anti-S probes and by metabolic features.

Because of its small size the new methanogen is named Methanocorpusculum parvum.

Key words

Archaebacteria Methanogens Methanocorpusculum parvum Taxonomy 16 S rRNA Serological probes Physiology Tungsten Cofactors Cytochrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am J Clin Nutr 25:1329–1334Google Scholar
  2. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  3. Birnboim C, Doly J (1979) Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523Google Scholar
  4. Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222Google Scholar
  5. Blaut M, Müller V, Fiebig K, Gottschalk G (1985) Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. J Bacteriol 164:95–101Google Scholar
  6. Bray GA (1960) A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal Biochem 1:279–285Google Scholar
  7. Burke KA, Calder K, Lascelles J (1980) Effects of molybdenum and tungstate on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans. Arch Microbiol 126:155–159Google Scholar
  8. Conway de Macario E, Macario AJL, Wolin MJ (1982a) Antibody analysis of relationships among methanogenic bacteria. J Bacteriol 149:316–319Google Scholar
  9. Conway de Macario E, Macario AJL, Wolin MJ (1982b) Specific antisera and immunological procedures for characterization of methanogenic bacteria. J Bacteriol 149:320–328Google Scholar
  10. Conway de Macario E, Macario AJL, Jovell RJ (1983) Quantitative slide micro-immunoenzymatic assay (micro SIA) for antibodies to particulate and non particulate antigens. J Immunol Meth 59:93–47Google Scholar
  11. Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov. Arch Microbiol 134:28–32Google Scholar
  12. Diekert GD, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch Microbiol 127:273–278Google Scholar
  13. Fox GE, Pechman KR, Woese CR (1977) Comparative cataloguing of 16 S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57Google Scholar
  14. Graf EG, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169Google Scholar
  15. Hammel KE, Cornell KL, Diekert GB, Thauer RK (1984) Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J Bacteriol 157:975–978Google Scholar
  16. Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov., spec. nov., a new acetotrophic, non hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9Google Scholar
  17. Jones JB, Stadtman TC (1977) Methanococcus vannielii: Culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406Google Scholar
  18. Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenase of Methanococcus vannielii. J Biol Chem 256:656–663Google Scholar
  19. Keltjens JT, van der Drift (1986) Electron transfer reactions in methanogens. FEMS Microbiol Rev 39:259–303Google Scholar
  20. König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig C 3:478–490Google Scholar
  21. Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem 135:89–94Google Scholar
  22. Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b 559 in Methanosarcina barkeri. FEBS Lett 105:271–274Google Scholar
  23. Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410Google Scholar
  24. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118Google Scholar
  25. McGill TJ, Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE (1986) Characteristic archaebacterial 16 S rRNA oligonucleotides. Syst Appl Microbiol 7:194–197Google Scholar
  26. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122Google Scholar
  27. Paynter MJB, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. nov., isolated from bovine rumen. J Bacteriol 95:1943–1951Google Scholar
  28. Rivard CJ, Henson JM, Thomas MV, Smith PH (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490Google Scholar
  29. Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a genus of marine methanogenic bacteria and characterization of Methanogenium cariaci spec. nov. and Methanogenium marisnigri spec. nov. Arch Microbiol 121:147–153Google Scholar
  30. Scherer P, Sahm H (1981) Effect of trace minerals and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65Google Scholar
  31. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107Google Scholar
  32. Scott RH, Sperl GT, DeMoss JA (1979) In vitro incorporation of molybdate into demolybdo proteins in Escherichia coli. J Bacteriol 137:719–726Google Scholar
  33. Sowers KR, Ferry FG (1985) Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine. Arch Microbiol 142:148–151Google Scholar
  34. Sowers KR, Johnson JL, Ferry JG (1984) Phylogenetic relationship among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int J Syst Bacteriol 34:444–450Google Scholar
  35. Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution (Society for General Microbiology Symposium 32). Cambridge, Cambridge University Press, pp 1–31Google Scholar
  36. Stackebrandt E, Seewaldt E, Ludwig W, Schleifer KH, Huser BA (1982) The phylogenetic position of Methanothrix soehngenii elucidated by a modified technique of sequencing oligonucleotides from 16 S rRNA. Zentralbl Bakt Hyg, I. Abt Orig C 3:90–100Google Scholar
  37. Stackebrandt E, Ludwig W, Fox GE (1985) 16 S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in microbiology. Academic Press, London, pp 75–107Google Scholar
  38. Van Bruggen JJA, Zwart KB, Hermans JGF, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosum sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374Google Scholar
  39. Wei-Mei Ching, Wittwer AJ, Lin Tsai, Stadtman TC (1984) Distribution of two selenonucleotides among the selenium containing tRNAs from Methanococcus vannielii. Proc Natl Acad Sci USA 81:57–60Google Scholar
  40. Whitman WB, Wolfe RS (1980) Presence of nickel in factor F430 from Methanobacterium bryantii. Biochem Biophys Res Common 92:1196–1201Google Scholar
  41. Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062Google Scholar
  42. Wildenauer FX, Winter J (1985) Anaerobic digestion of high-strength acidic whey in a pH controlled up-flow anaerobic fixed film loop reactor. Appl Microbiol Biotechnol 22:367–372Google Scholar
  43. Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36Google Scholar
  44. Winter J (1980) Glucose fermentation to methane and CO by defined mixed cultures. Zentralbl Bakt Hyg I. Abt C 1:201–214Google Scholar
  45. Winter J, Lerp C, Zabel HP, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungstenrequiring, thermophilic, autotrophic methanogen. System Appl Microbiol 5:457–466Google Scholar
  46. Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. J Biol Chem 257:7926–7929Google Scholar
  47. Zabel HP, König H, Winter J (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137:308–315Google Scholar
  48. Zabel HP, König H, Winter J (1985) Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. System Appl Microbiol 6:72–78Google Scholar
  49. Zellner G, Winter J (1987) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol (in press)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Zellner
    • 1
  • C. Alten
    • 2
  • E. Stackebrandt
    • 2
  • E. Conway de Macario
    • 3
  • J. Winter
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgGermany
  2. 2.Institut für Allgemeine MikrobiologieChristian-Albrechts-UniversitätKielGermany
  3. 3.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations