Histochemistry

, Volume 39, Issue 2, pp 97–127 | Cite as

The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons

  • Olle Lindvall
  • Anders Björklund
Article

Summary

This paper gives a detailed description of the glyoxylic acid fluorescence histochemical method as designed for the highly sensitive visualization of catecholamine neurons. In this method, the primary catecholamines, dopamine and noradrenaline, are efficiently converted to intensely fluorescent 2-carboxymethyl-dihydroisoquinoline derivatives in a well defined reaction with glyoxylic acid. The method is carried out on sections from fresh or glyoxylic acid-perfused tissue, which are immersed in a glyoxylic acid solution, dried, and then reacted either by heating at +100°C, or by glyoxylic acid vapour treatment at +100°C. The method has a high reproducibility, is rapid and convenient, and if desired, sections of good quality can be ready for fluorescence microscopy within half an hour after the sacrifice of the animal.

The glyoxylic acid method demonstrates central and peripheral dopamine- and noradrenaline-containing neurons with an extraordinary sensitivity and precision. The entire adrenergic neuron, including the non-terminal portions of the axon and sometimes also the dendrites, becomes fluorescent, making the method ideal for neuroanatomical tracing of central catecholamine pathways. The spectral characteristics of the glyoxylic acid-induced fluorophores have been investigated, and it is concluded that the catecholamine fluorophores can be identified and distinguished by microspectrofluorometry from those of other fluorogenic monoamines known to occur in the vertebrate brain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., Ungerstedt, U.: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67, 313–326 (1966)Google Scholar
  2. Axelsson, S., Björklund, A., Falck, B., Lindvall, O., Svensson, L. Å.: Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta physiol. scand. 87, 57–62 (1973)Google Scholar
  3. Björklund, A., Ehinger, B., Falck, B.: A method for differentiating dopamine from noradrenaline in tissue sections by microspectrofluorometry. J. Histochem. Cytochem. 16, 263–270 (1968a)Google Scholar
  4. Björklund, A., Ehinger, B., Falck, B.: Analysis of fluorescence excitation peak ratios for the cellular identification of noradrenaline, dopamine, or their mixtures. J. Histochem. Cytochem. 20, 56–64 (1972a)Google Scholar
  5. Björklund, A., Falck, B., Håkanson, R.: Histochemical demonstration of tryptamine. Properties of the formaldehyde-induced fluorophores of tryptamine and related indole compounds in models. Acta physiol. scand., Suppl. 318 (1968b)Google Scholar
  6. Björklund, A., Falck, B., Lindvall, O., Svensson, L. Å.: New aspects on reaction mechanisms in the formaldehyde histofluorescence method for monoamines. J. Histochem. Cytochem. 21, 17–25 (1973a)Google Scholar
  7. Björklund, A., Falck, B., Owman, Ch.: Fluorescence microscopic and microspectrofluorometric techniques for the cellular localization and characterization of biogenic amines. In: Methods of investigative and diagnostic endocrinology, edit. by S. A. Berson, vol. 1: The thyroid and biogenic amines, edit. by J. E. Rall and I. J. Kopin, p. 318–368. Amsterdam: North-Holland Publ. Comp. 1972bGoogle Scholar
  8. Björklund, A., Håkanson, R., Lindvall, O., Sundler, F.: Fluorescence histochemical demonstration of peptides with NH2- or COOH-terminal tryptophan or dopa by condensation with glyoxylic acid. J. Histochem. Cytochem. 21, 253–265 (1973b)Google Scholar
  9. Björklund, A., Lindvall, O.: Dopamine-containing dendrites in the pars reticulata of the substantia nigra. To be published (1974)Google Scholar
  10. Björklund, A., Lindvall, O., Moore, R. Y., Stenevi, U.: Adrenergic neocortical innervation: organization of dopaminergic systems from the midbrain. To be published (1974a)Google Scholar
  11. Björklund, A., Lindvall, O., Nobin, A.: Evidence for an incerto-hypothalamic dopamine system in the rat. Neuroendocrinology. To be published (1974b)Google Scholar
  12. Björklund, A., Lindvall, O., Svensson, L. Å.: Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32, 113–131 (1972c)Google Scholar
  13. Björklund, A., Moore, R. Y., Nobin, A., Stenevi, U.: The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res. 51, 171–191 (1973c)Google Scholar
  14. Björklund, A., Nobin, A.: Fluorescence histochemical and microspectrofluorometric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res. 51, 193–205 (1973)Google Scholar
  15. Carlsson, A., Falck, B., Hillarp, N.-Å.: Cellular localization of brain monoamines. Acta physiol. scand., Suppl. 196, 1–27 (1962)Google Scholar
  16. Corrodi, H., Hillarp, N.-Å.: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 1. Identifizierung der fluoreszierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv. chim. Acta 46, 2425–2430 (1963)Google Scholar
  17. Corrodi, H., Hillarp, N.-Å.: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd. Helv. chim. Acta 47, 911–918 (1964)Google Scholar
  18. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967)Google Scholar
  19. Cuello, A. C., Horn, A. S., Mackay, A. V. T., Iversen, L. L.: Catecholamines in the median eminence: new evidence for a major noradrenergic input. Nature (Lond.) 243, 465–467 (1973)Google Scholar
  20. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 64, Suppl. 232 (1964)Google Scholar
  21. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247 (1965)Google Scholar
  22. Elliott, K. A. C.: The use of brain slices. In: Handbook of neurochemistry, vol. 2, edit. by A. Lajtha, p. 103–114. New York and London: Plenum Press 1969Google Scholar
  23. Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197 (1962)Google Scholar
  24. Falck, B., Hillarp, N.-Å., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962)Google Scholar
  25. Farnebo, L. O.: Histochemical demonstration of transmitter release from noradrenaline, dopamine and 5-hydroxytryptamine nerve terminals in field stimulated rat brain slices. Z. Zellforsch. 122, 503–519 (1971)Google Scholar
  26. Furness, J. B., Malmfors, T.: Aspects of the arrangement of the adrenergic innervation in guinea-pigs as revealed by the fluorescence histochemical method applied to stretched, air-dried preparations. Histochemie 25, 297–309 (1971)Google Scholar
  27. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch. 65, 573–596 (1965a)Google Scholar
  28. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247 (1965b)Google Scholar
  29. Fuxe, K., Hamberger, B., Hökfelt, T.: Distribution of noradrenaline nerve terminals in cortical areas of the rat. Brain Res. 8, 125–131 (1968)Google Scholar
  30. Fuxe, K., Hamberger, B., Malmfors, T.: The effect of drugs on accumulation of monoamines in tubero-infundibular dopamine neurons. Europ. J. Pharmacol. 1, 334–341 (1967)Google Scholar
  31. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta physiol. scand., Suppl. 295 (1967)Google Scholar
  32. Horn, A. S., Coyle, J. T., Snyder, S. H.: Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Molec. Pharmacol. 7, 66–80 (1971)Google Scholar
  33. Hökfelt, T., Fuxe, K.: On the morphology and the neuro-endocrine role of the hypothalamic catecholamine neurons. In: Brain-endocrine interaction, edit. by K. M. Knigge, D. E. Scott and A. Weindl, p. 181–223. Basel: Karger 1972Google Scholar
  34. Hökfelt, T., Ljungdahl, Å.: Modification of the Falck-Hillarp formaldehyde fluorescence method using the Vibratome®: simple, rapid and sensitive localization of catecholamines in sections of unfixed or formalin fixed brain tissue. Histochemie 29, 325–339 (1972)Google Scholar
  35. Jacobowitz, D., Kostrzewa, R.: Selective action of 6-hydroxydopa on noradrenergic terminals: Mapping of preterminal axons of the brain. Life Sci. 10, 1329–1342 (1971)Google Scholar
  36. Jonsson, G.: Fluorescence studies on some 6,7-substituted 3,4-dihydroisoquinolines formed from 3-hydroxytyramine (dopamine) and formaldehyde. Acta chem. scand. 20, 2755–2762 (1966)Google Scholar
  37. Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta physiol. scand., in press (1974)Google Scholar
  38. Lindvall, O., Björklund, A., Falck, B.: Glyoxylic acid condensation: A new fluorescence histochemical method for sensitive and detailed tracing of central catecholamine neurons. Frontiers in Catecholamine Research, in press (1973a)Google Scholar
  39. Lindvall, O., Björklund, A., Hökfelt, T., Ljungdahl, Å.: Application of the glyoxylic acid method to Vibratome sections for improved visualization of central catecholamine neurons. Histochemie 35, 31–38 (1973b)Google Scholar
  40. Lindvall, O., Björklund, A., Moore, R. Y.: The adrenergic innervation of the neocortex as revealed by the glyoxylic acid fluorescence method. To be published (1974a)Google Scholar
  41. Lindvall, O., Björklund, A., Nobin, A., Stenevi, U.: The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J. comp. Neurol., in press (1974b)Google Scholar
  42. Lindvall, O., Björklund, A., Svensson, L.-Å.: Fluorophore formation from catecholamines and related compounds in the glyoxylic acid fluorescence histochemical method. 39 (1974c)Google Scholar
  43. Loizou, L. A.: The postnatal ontogeny of monoamine-containing neurones in the central nervous system of the albincorat. Brain Res. 40, 395–418 (1972)Google Scholar
  44. Olson, L., Fuxe, K.: On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation. Brain Res. 28, 165–171 (1971)Google Scholar
  45. Olson, L., Fuxe, K.: Further mapping out of central noradrenaline neuron systems: Projections of the subcoeruleus area. Brain Res. 43, 289–295 (1972)Google Scholar
  46. Olson, L., Ungerstedt, U.: Monoamine fluorescence in CNS smears: sensitive and rapid visualization of nerve terminals without freezedrying. Brain Res. 17, 343–347 (1970)Google Scholar
  47. Sachs, Ch., Jonsson, G.: Degeneration of central and peripheral noradrenaline neurons produced by 6-hydroxy-DOPA. J. Neurochem. 19, 1561–1575 (1972)Google Scholar
  48. Snyder, S. H., Coyle, J. T.: Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J. Pharmacol. exp. Therap. 165, 78–86 (1969)Google Scholar
  49. Svensson, L.-Å., Björklund, A., Lindvall, O.: Studies on the reactions between glyoxylic acid and various catecholamines and tetrahydroisoquinolines. To be published (1974)Google Scholar
  50. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand., Suppl. 367, 1–48 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Olle Lindvall
    • 1
  • Anders Björklund
    • 1
  1. 1.Department of HistologyUniversity of LundLundSweden

Personalised recommendations