Biochemical Genetics

, Volume 5, Issue 5, pp 487–495 | Cite as

Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae

  • Georg Michaelis
  • Stephen Douglass
  • Ming-Jer Tsai
  • Richard S. Criddle


Ethidium bromide is known to be a powerful mutagen for the induction of cytoplasmically inherited petite mutations in yeast. The effect of ethidium bromide on the degree of suppressiveness of the induced mutants as a function of exposure time is described. The mitochondrial DNA of 20 ethidium bromide-induced petite mutants has been studied to determine its absence or presence and its buoyant density. Ten mutants, in which we were not able to detect any mitochondrial DNA, were neutral petites. The 10 remaining mutants with mitochondrial DNA simultaneously showed a measurable degree of suppressiveness. It was not possible to correlate the buoyant density of the mutant mitochondrial DNA with the degree of suppressiveness.


Exposure Time Saccharomyces Cerevisiae Ethidium Bromide Buoyant Density Measurable Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernardi, G., Faures, M., Piperno, G., and Slonimski, P. P. (1970). Mitochondrial DNA's from respiratory-sufficient and cytoplasmic respiratory-deficient mutant yeast. J. Mol. Biol. 48 23.Google Scholar
  2. Borst, P., and Kroon, A. M. (1969). Mitochondrial DNA: Physicochemical properties, replication and genetic function. Intern. Rev. Cytol. 26 107.Google Scholar
  3. Carnevali, F., Piperno, G., and Tecce, G. (1966). Satellite components of DNA from a cytoplasmic “petite” mutant of Saccharomyces cerevisiae. Accad. Naz. Lin. Rend. Sci., Fis. Mat. Nat. 41 (Ser. 8): 194.Google Scholar
  4. Carnevali, F., Morpurgo, G., and Tecce, G. (1969). Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: A hypothesis on the nature of the mutation. Science 163 1331.Google Scholar
  5. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., and Slonimski, P. P. (1969). Mitochondrial genetics I. Methodology and phenomenology. Symposia of the Society for Experimental Biology, Symposium 24, “Control of Organelle Development,” Cambridge University Press, p. 449.Google Scholar
  6. Corneo, G., Moore, C., Sanadi, D. R., Grossman, L. D., and Marmur, J. (1966). Mitochondrial DNA in yeast and some mammalian species. Science 151 687.Google Scholar
  7. Ephrussi, B., and Grandchamp, S. (1965). Études sur la suppressivité des mutants à deficience respiratoire de la levure I. Existence au niveau cellulaire de divers “degrés de suppressivité.” Heredity (London) 20 1.Google Scholar
  8. Ephrussi, B., de Margerie-Hottinguer, H., and Roman, H. (1955). Suppressiveness: A new factor in the genetic determination of the synthesis of respiratory enzymes in yeast. Proc. Natl. Acad. Sci. 41 1065.Google Scholar
  9. Ephrussi, B., Jakob, H. and Grandchamp, S. (1966). Études sur la suppressivité des mutants à deficience respiratoire de la levure II. Etapes de la mutation grande en petite provoque par la facteur suppressif. Genetics (Princeton) 54 1.Google Scholar
  10. Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., and Marmur, J. (1970). The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. Mol. Biol. 52 323.Google Scholar
  11. Grossman, L. I., Goldring, E. S., and Marmur, J. (1969). Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis. J. Mol. Biol. 46 367.Google Scholar
  12. Jakob, H. (1962). Technique de synchronisation de la formation des zygotes chez la levure Saccharomyces cerevisiae. Compt. Rend. Acad. Sci. Paris 254 3909.Google Scholar
  13. Mounolou, J. C., Jakob, H., and Slonimski, P. P. (1966). Mitochondrial DNA from yeast “petite” mutants. Specific changes of buoyant density corresponding to different cytoplasmic mutants. Biochem. Biophys. Res. Commun. 24 218.Google Scholar
  14. Moustacchi, E., and Williamson, D. H. (1966). Physiological variations in satellite components of yeast DNA detected by density gradient centrifugation. Biochem. Biophys. Res. Commun. 23 56.Google Scholar
  15. Nagley, P., and Linnane, A. W. (1970). Mitochondrial DNA deficient petite mutants of yeast. Biochem. Biophys. Res. Commun. 39 989.Google Scholar
  16. Reilly, C., and Sherman, F. (1965). Glucose repression of cytochrome a synthesis in cytochromedeficient mutants of yeast. Biochim. Biophys. Acta 95 640.Google Scholar
  17. Schildkraut, C. L., Marmur, J., and Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4 430.Google Scholar
  18. Sherman, F. (1963). Respiration-deficient mutants of yeast. I. Genetics. Genetics 48 375.Google Scholar
  19. Sherman, F., and Slonimski, P. P. (1964). Respiration-deficient mutants of yeast. II. Biochemistry. Biochim. Biophys. Acta 90 1.Google Scholar
  20. Slonimski, P. P. (1968). Discussion on biochemical studies of “Mitochondria” in cytoplasmic mutants. In Slater, E. C., et al. (eds.), Biochemical Aspects of the Biogenesis of Mitochondria, Bari, Adriatica Editrice, p. 475.Google Scholar
  21. Slonimski, P. P., Perrodin, G., and Croft, J. H. (1968). Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory deficient non-chromosomal “petites”. Biochem. Biophys. Res. Commun. 30 232.Google Scholar
  22. Szybalski, W. (1968). Use of cesium sulfate for equilibrium density gradient centrifugation. In Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Vol. 12, Part B, Academic Press, New York, p. 330.Google Scholar
  23. Tewari, K. K., Votsch, W., Mahler, H. R., and Mackler, B. (1966). Biochemical correlates of respiratory deficiency. VI. Mitochondrial DNA. J. Mol. Biol. 20 453.Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • Georg Michaelis
    • 1
  • Stephen Douglass
    • 1
  • Ming-Jer Tsai
    • 1
  • Richard S. Criddle
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of CaliforniaDavis

Personalised recommendations