Biochemical Genetics

, Volume 4, Issue 4, pp 499–508 | Cite as

The time course of development of acetylcholinesterase and choline acetyltransferase in Drosophila melanogaster

  • S. A. Dewhurst
  • R. E. McCaman
  • W. D. Kaplan
Article

Abstract

Twenty stages in the life cycle of Canton-S, a normal strain of Drosophila melanogaster, were investigated for protein content and the activities of choline acetyltransferase and acetylcholinesterase, enzymes associated with the metabolism of acetylcholine. The maximum protein content is reached at the prepupal stage. Specific activities of choline acetyltransferase and acetylcholinesterase were high in the larval stages and again in the mature fly. The activities of these enzymes expressed on a per fly basis were compared with the activities of other enzymes, previously published by other workers, expressed on the same basis. The developmental pattern of acetylcholinesterase and choline acetyltransferase differed from the patterns exhibited by the other enzymes described earlier. It was possible to relate the different enzyme patterns to known changes occurring in the life cycle of Drosophila melanogaster.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, G. W. (1945). Biochemical genetics. Chem. Rev. 37 15.Google Scholar
  2. Beckman, L., and Johnson, F. M. (1964). Genetic control of aminopeptidases in Drosophila melanogaster. Hereditas 51 221.Google Scholar
  3. Benzer, S. (1967). Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. 58 1112.Google Scholar
  4. Church, R. B., and Robertson, F. W. (1966). A biochemical study of the growth of Drosophila melanogaster. J. Exptl. Zool. 162 337.Google Scholar
  5. Colhoun, E. H. (1958). Distribution of choline acetylase in insect conductive tissue. Nature 182 1378.Google Scholar
  6. Demerec, M., and Kaufman, B. P. (1967). Drosophila Guide, Introduction to the Genetics and Cytology of Drosophila melanogaster, Carnegie Inst. Wash. Publ., Washington, D.C.Google Scholar
  7. Goldberg, A. M., Kaita, A. A., and McCaman, R. E. (1969). Microdetermination of choline acetyltransferase—A comparison of reinecke vs. periodide precipitation. J. Neurochem. 16 823.Google Scholar
  8. Kaplan, W. D., and Trout, W. E., III (1969). The behavior of four neurological mutants of Drosophila. Genetics 61 399.Google Scholar
  9. Kikkawa, H. (1968). Biochemical genetics of proteolytic enzymes in Drosophila melanogaster. I. General considerations. Japan J. Genet. 43 137.Google Scholar
  10. Lewis, E. B. (1960). A new standard food medium. Drosophila Information Service 34 117.Google Scholar
  11. Lowry, O. H. Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193 265.Google Scholar
  12. McCaman, M. W., Tomey, L. R., and McCaman, R. E. (1968). Radiomimetric assay of acetylcholinesterase activity in submicrogram amounts of tissue. Life Sci. 7 233.Google Scholar
  13. McCaman, R. E., and Hunt, J. M. (1965). Microdetermination of choline acetylase in nervous tissue. J. Neurochem. 12 253.Google Scholar
  14. McCaman, R. E., Rodriguez de Lores Arnaiz, G., and De Robertis, E. (1965). Species differences in subcellular distribution of choline acetylase in the CNS. J. Neurochem. 12 927.Google Scholar
  15. Metcalf, R. L., and March, R. B. (1950). Properties of acetylcholine esterases from the bee, the fly and mouse and their relation to insecticide action. J. Econ. Entomol. 43 670.Google Scholar
  16. Roeder, K. D. (1948). The effect of anticholinesterases and related substances on nervous activity in the cockroach. Johns Hopkins Hosp. Bull. 83 587.Google Scholar
  17. Schneiderman, H., Young, W. J., and Childs, B. (1966). Patterns of alkaline phosphatase in developing Drosophilac. Science 151 461.Google Scholar
  18. Twarog, B. M., and Roeder, K. D. (1957). Pharmacological observations on the desheathed last abdominal ganglion of the cockroach. Ann. Entomol. Soc. Am. 50 231.Google Scholar
  19. Ungar, G., and Irwin, L. N. (1968). In Ehrenpreis, S., and Solnitzky, O. C. (eds.), Neurosciences Research, Academic Press, New York, p. 73.Google Scholar
  20. Ursprung, H., Smith, K. D., Sofer, W. H., and Sullivan, D. T. (1968).Assay systems for the study of gene function. Science 160 1075.Google Scholar
  21. Waldner-Stiefelmeier, R. D. (1967). Untersuchungen über die Proteasen im Wildtyp und in den Letalmutanten (lme and ltr) von Drosophila melanogaster. Z. Vergleich. Physiol. 56 268.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • S. A. Dewhurst
    • 1
  • R. E. McCaman
    • 1
  • W. D. Kaplan
    • 2
  1. 1.Neurosciences DivisionCity of Hope Medical CenterDuarte
  2. 2.Department of BiologyCity of Hope Medical CenterDuarte

Personalised recommendations