Advertisement

Journal of Sol-Gel Science and Technology

, Volume 1, Issue 1, pp 85–92 | Cite as

Synthesis and spectroscopy of tpps-doped silica gels by the sol-gel process

  • Kazutaka Kamitani
  • Motohiro Uo
  • Hiroyuki Inoue
  • Akio Makishima
Article

Abstract

Tetraphenylporphinetetrasulfonic acid (TPPS), which is well known as a photochemical hole-burning (PHB) dye, was incorporated in silica gels obtained by the sol-gel process from tetramethoxysilane (TMOS). The form of TPPS must be free base (H2P), which exists in basic condition, to be active in PHB. To obtain transparent and higher density silica gels doped with free-base TPPS, two-step hydrolysis processes using solutions containing NaOH were developed, and the gels having bulk density of about 1.5 g/cm3 were synthesized. The form of TPPS in the gels was investigated by measuring the absorption and luminescence spectra, and it was found that in the silica gels almost all the TPPS retained free-base form at the molar ratio of NaOH/TMOS above 10−3.

Key words

Free-base TPPS silica gels NaOH monocation spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984).Google Scholar
  2. 2.
    D. Avnir, V.R. Kaufman, and R. Reisfeld, J. Non-Cryst. Solids 74, 395 (1985).Google Scholar
  3. 3.
    D. Levy, S. Einhorn, and D. Avnir, J. Non-Cryst. Solids 113, 137 (1989).Google Scholar
  4. 4.
    R. Gvishi and R. Reisfeld, J. Non-Cryst. Solids 128, 69 (1991).Google Scholar
  5. 5.
    C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).Google Scholar
  6. 6.
    J. McKiernan, J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2129 (1989).Google Scholar
  7. 7.
    J.C. Pouxviel, B. Dunn, and J.I. Zink, J. Phys. Chem. 93, 2134 (1989).Google Scholar
  8. 8.
    T. Tani, H. Namikawa, K. Arai, and A. Makishima, J. Appl. Phys. 58, 3559 (1985).Google Scholar
  9. 9.
    A. Makishima and T. Tani, J. Am. Ceram. Soc. 69, C72 (1986).Google Scholar
  10. 10.
    H. Inoue, T. Iwamoto, A. Makishima, M. Ikemoto, and K. Horie, J. Opt. Soc. Am. B9, 816 (1992).Google Scholar
  11. 11.
    R. Locher, A. Renn and U.P. Wild, Chem, Phys. Lett. 138, 405 (1987).Google Scholar
  12. 12.
    H. Tanaka, J. Takahashi, J. Tsuchiya, Y. Kobayashi, and Y. Kurokawa, J. Non-Cryst. Solids 109, 164 (1989).Google Scholar
  13. 13.
    W.E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications (Springer, Berlin, 1988).Google Scholar
  14. 14.
    J. Friedrich, H. Wolfrum, and D. Haarer, J. Chem. Phys. 77, 2309 (1982).Google Scholar
  15. 15.
    A. Furusawa, K. Horie, and I. Mita, Chem. Phys. Lett. 161, 227 (1989).Google Scholar
  16. 16.
    A. Furusawa, K. Horie, K. Kuroki, and I. Mita, J. Appl. Phys. 66, 6041 (1989).Google Scholar
  17. 17.
    H.W.H. Lee, M. Gehrtz, E.E. Marinero, and W.E. Moerner, Chem. Phys. Lett. 118, 611(1985).Google Scholar
  18. 18.
    W.P. Ambrose and W.E. Moerner, Chem. Phys. 144, 71(1990).Google Scholar
  19. 19.
    R.K. Iller, The Chemistry of Silica (John Wiley & Sons, New York, 1979).Google Scholar
  20. 20.
    M. Nogami and Y. Moriya, J. Non-Cryst. Solids 37, 191 (1980).Google Scholar
  21. 21.
    J. Zarzycki, M. Prassas, and J. Phalippou, J. Mater. Sci. 17, 3371 (1982).Google Scholar
  22. 22.
    M. Yamane, S. Inoue, and A. Yasumori, J. Non-Cryst. Solids 63, 13 (1984).Google Scholar
  23. 23.
    H. Schmidt, H. Scholze, and A. Kaiser, J. Non-Cryst. Solids 63, 1 (1984).Google Scholar
  24. 24.
    H. Schmidt, J. Non-Cryst. Solids 100, 51 (1988).Google Scholar
  25. 25.
    E.J.A. Pope and J.D. Mackenzie, J. Non-Cryst. Solids 87, 185 (1986).Google Scholar
  26. 26.
    C.J. Brinker, K.D. Keefer, D.W. Schaefer, and C.S. Ashley, J. Non-Cryst, Solids 48, 47 (1982).Google Scholar
  27. 27.
    C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, and C.S. Ashley, J. Non-Cryst. Solids 63, 45 (1984).Google Scholar
  28. 28.
    A.H. Boonstra and J.M.E. Baken, J. Non-Cryst. Solids 122, 171 (1990).Google Scholar
  29. 29.
    T.N.M. Bernards, M.J. van Bommel, and A.H. Boonstra, J. Non-Cryst. Solids 134, 1 (1991).Google Scholar
  30. 30.
    D. Dolphin, ed., The Porphyrins (Academic Press, New York, 1978),Google Scholar
  31. 31.
    A. Stone and E.B. Fleischer, J. Am. Chem. Soc. 90, 2735 (1968).Google Scholar
  32. 32.
    S. Aronoff and M. Calvin, J. Org. Chem. 8, 205 (1943).Google Scholar
  33. 33.
    S. Aronoff, J. Physc. Chem. 62, 428 (1958).Google Scholar
  34. 34.
    A. Neuberger, F.R.S. Neuberger, and J.J. Scott, Proc. Roy. Soc. (London) A213, 307 (1952).Google Scholar
  35. 35.
    R.I. Walter, J. Am. Chem. Soc. 75, 3860 (1953).Google Scholar
  36. 36.
    J. Itoh, T. Yotsuyanagi, and K. Aomura, Anal, Chim, Acta 74, 53 (1975).Google Scholar
  37. 37.
    R.F. Pasternack, P.R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, G.C. Venturo, and L. deC. Hinds, J. Am. Chem. Soc. 94, 4511 (1972).Google Scholar
  38. 38.
    N.E. Kagan, D. Mauzerall, and R.B. Merrified, J. Am. Chem. Soc. 99, 5484(1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Kazutaka Kamitani
    • 1
  • Motohiro Uo
    • 1
  • Hiroyuki Inoue
    • 1
  • Akio Makishima
    • 1
  1. 1.Department of Materials Science, Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations