Biochemical Genetics

, Volume 4, Issue 6, pp 707–718 | Cite as

Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse

  • Thomas B. Shows
  • Verne M. Chapman
  • Frank H. Ruddle


Malate dehydrogenase and malic enzyme each possess supernatant and mitochondrial molecular forms which are structurally and genetically independent. We describe electrophoretic variants of the mitochondrial enzymes of malate dehydrogenase and malic enzyme in mice. Progeny testing from genetic crosses indicated that the genes which code for mitochondrial malate dehydrogenase and malic enzyme were not inherited maternally but as independent unlinked nuclear autosomal genes. The locus for mitochondrial malic enzyme was located on linkage group I. Linkage analysis with a third mitochondrial enzyme marker, glutamic oxaloacetic transaminase, showed that the nuclear genes which code for the three mitochondrial enzymes were not closely linked to each other. This evidence suggests that clusters of nuclear genes coding for mitochondrial function are unlikely in mice.


Linkage Group Linkage Analysis Mitochondrial Function Nuclear Gene Molecular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Britten, R. J., and Davidson, E. H. (1969). Gene regulation for higher cells: A theory. Science 165 349.Google Scholar
  2. Carter, N. D., and Parr, C. W. (1967). Isozymes of phosphoglucose isomerase in mice. Nature 216 511.Google Scholar
  3. Chapman, V. M., Ruddle, F. H., and Roderick, T. H. Linkage relationships of biochemical markers in the mouse. In preparation.Google Scholar
  4. Christie, G. S., and Judah, J. D. (1953). Intracellular distribution of enzymes. Proc. Roy. Soc. London Ser. B 141 420.Google Scholar
  5. Davidson, R. G., and Cortner, J. A. (1967). Mitochondrial malate dehydrogenase: A new genetic polymorphism in man. Science 157 1569.Google Scholar
  6. DeLorenzo, R. J., and Ruddle, F. H. (1969). Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse (Mus musculus). Biochem. Genet. 3 151.Google Scholar
  7. DeLorenzo, R. J., and Ruddle, F. H. (1970). Glutamate oxalate transaminase (GOT) genetics in Mus musculus: Linkage, polymorphism, and phenotypes of the Got-2 and Got-1 loci. Biochem. Genet. 4 259.Google Scholar
  8. Florkin, M., and Stotz, E. H. (eds.) (1964). Comprehensive Biochemistry, Vol. 13, Elsevier, New York.Google Scholar
  9. Freeman, K. B., Holdar, D., and Work, T. S. (1967). The morphological site of synthesis of cytochrome c in mammalian cells (Krebs cells). Biochem. J. 105 947.Google Scholar
  10. Gibor, A., and Granick, S. (1964). Plastids and mitochondria: Inheritable systems. Science 145 890.Google Scholar
  11. Green, M. C. (1966). Mutant genes and linkages. In Green, E. L. (ed.), Biology of the Laboratory Mouse, 2nd ed., McGraw-Hill, New York, p. 87.Google Scholar
  12. Henderson, N. S. (1966). Isozymes and genetic control of NADP-malate dehydrogenase in mice. Arch. Biochem. Biophys. 117 28.Google Scholar
  13. Hsu, R. Y., and Lardy, H. A. (1967). Pigeon liver malic enzyme. III. Fluorescence studies of coenzyme binding. J. Biol. Chem. 242 527.Google Scholar
  14. Hutton, J. J., and Roderick, T. H. (1970). Linkage analyses using biochemical variants in mice. III. Linkage relationships of eleven biochemical markers. Biochem. Genet. 4 339.Google Scholar
  15. Kadenbach, B. (1966). Synthesis of mitochondrial proteins: Demonstration of a transfer of proteins from microsomes into mitochondria. Biochim. Biophys. Acta 134 430.Google Scholar
  16. Kitto, G. B., and Kaplan, N. O. (1966). Purification and properties of chicken heart mitochondrial and supernatant malic dehydrogenase. Biochemistry 5 3966.Google Scholar
  17. Kitto, G. B., and Lewis, R. G. (1967). Purification and properties of tuna supernatant and mitochondrial malate dehydrogenase. Biochim. Biophys. Acta 139 1.Google Scholar
  18. Kitto, G. B., Wassarman, P. M., and Kaplan, N. O. (1966). Enzymatically active conformers of mitochondrial malate dehydrogenase. Proc. Natl. Acad. Sci. 56 578.Google Scholar
  19. Longo, G. P., and Scandalios, J. G. (1969). Nuclear gene control of mitochondrial malic dehydrogenase in maize. Proc. Natl. Acad. Sci. 62 104.Google Scholar
  20. Meizel, S., and Markert, C. L. (1968). Malate dehydrogenase isozymes of the marine snail, Ilyanassa obsoleta. Arch. Biochem. Biophys. 122 753.Google Scholar
  21. Nass, M. M. K. (1969). Mitochondrial DNA: Advances, problems, and goals. Science 165 25.Google Scholar
  22. Neupert, W., Bridczka, D., and Bucher, T. (1967). Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria. Biochem. Biophys. Res. Commun. 27 488.Google Scholar
  23. Ozaki, H., and Whiteley, A. H. (1967). p-Malate dehydrogenase of the sea urchin Strongylocentratus purpuratus. Biochim. Biophys. Acta 146 587.Google Scholar
  24. Reich, E., and Luck, D. J. L. (1966). Replication and inheritance of mitochondrial DNA. Proc. Natl. Acad. Sci. 55 1600.Google Scholar
  25. Sager, R. (1964). Nonchromosomal heredity. New Engl. J. Med. 271 352.Google Scholar
  26. Selander, R. K., Hunt, W. G., and Yang, S. Y. (1969). Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution 23 379.Google Scholar
  27. Shaw, C. R. (1966). The use of genetic variation in the analysis of isozyme structure. Brookhaven Symp. Biol. 17 117.Google Scholar
  28. Shows, T. B., and Ruddle, F. H. (1968a). Malate dehydrogenase: Evidence for tetrameric structure in Mus musculus. Science 160 1356.Google Scholar
  29. Shows, T. B., and Ruddle, F. H. (1968b). Function of the lactate dehydrogenase B gene in mouse erythrocytes: Evidence for control by a regulatory gene. Proc. Natl. Acad. Sci. 61 574.Google Scholar
  30. Shows, T. B., Ruddle, F. H., and Roderick, T. H. (1969). Phosphoglucomutase electrophoretic variants in the mouse. Biochem. Genet. 3 25.Google Scholar
  31. Sulebele, G., and Silverstein, E. (1969). Malate dehydrogenase and aspartate aminotransferase of Physomyces blakesleeanus. Arch. Biochem. Biophys. 133 425.Google Scholar
  32. Tait, A. (1968). Genetic control of β-hydroxybutyric dehydrogenase in Paramecium aurelia. Nature 219 941.Google Scholar
  33. Tait, A. (1970). Genetics of NADP isocitrate dehydrogenase in Paramecium aurelia. Nature 225 181.Google Scholar
  34. Thorne, C. J. R. (1960). Characterization of two malic dehydrogenases from rat liver. Biochim. Biophys. Acta 42 175.Google Scholar
  35. Thorne, C. J. R., Grossman, L. I., and Kaplan, N. O. (1963). Starch-gel electrophoresis of malate dehydrogenase. Biochim. Biophys. Acta 73 193.Google Scholar
  36. Waddington, C. A. (1969). Gene regulation in higher cells. Science 166 639.Google Scholar
  37. Wolfe, R. G., and Neilands, J. B. (1956). Some molecular and kinetic properties of heart malic dehydrogenase. J. Biol. Chem. 221 61.Google Scholar
  38. Woodward, D. O., and Munkres, K. D. (1966). Alterations of a maternally inherited mitochondrial structural protein in respiratory-deficient strains of neurospora. Proc. Natl. Acad. Sci. 55 872.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • Thomas B. Shows
    • 1
  • Verne M. Chapman
    • 2
  • Frank H. Ruddle
    • 2
  1. 1.Roswell Park Memorial Institute (New York State Department of Health)Buffalo
  2. 2.Department of BiologyYale UniversityNew Haven

Personalised recommendations