Biochemical Genetics

, Volume 19, Issue 11–12, pp 1101–1114 | Cite as

The genetics and biochemistry of urease in Ustilago violacea

  • Michael L. Baird
  • Edward D. Garber


Two complementing loci in different linkage groups of the basidiomycete Ustilago violacea are involved in urease activity: a structural one (ure-1) and a second inferred to involve a permease (ure-2) locus. Two types of complementing mutations occur in the structural locus: null activity (ure-1a) and obviously reduced activity (ure-1b). The ure-2 mutants lacked urease activity in vivo on the phenol red-urea test medium, but gave extracts with wild-type activity. Extracts from wild-type strains gave one site of urease activity after polyacrylamide gel electrophoresis. A number of ure-1b mutants and active revertants from ure-1a mutants yielded electrophoretically variant urease sites. The results are discussed in terms of enzyme polymorphism in haploid eukaryotes by one (missense) or two (null, then missense) mutations.

Key words

urease electrophoresis Ustilago violacea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baird, M. L., and Garber, E. D. (1979). Genetics of Ustilago violacea. IV. An electrophoretic survey for urease variants in wild strains. Bot. Gaz. 14084.Google Scholar
  2. Benson, E. W., and Howe, H. B., Jr. (1978). Reversion and interallelic complementation at four urease loci in Neurospora crassa. Mol. Gen. Genet. 165277.Google Scholar
  3. Bradford, L. S., Jones, R. J., and Garber, E. D. (1975). An electrophoretic survey of fourteen species of the fungal genus Ustilago. Bot. Gaz. 136109.Google Scholar
  4. Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J. Bact. 52461.Google Scholar
  5. Clare, B. G., Flentje, N. T., and Atkinson, M. R. (1968). Electrophoretic patterns of oxidoreductases and other proteins as criteria in fungal taxonomy. Austral. J. Sci. 21275.Google Scholar
  6. Cooper, T. G., and Sumrada, R. (1975). Urea transport in Saccharomyces cerevisiae. J. Bact. 121571.Google Scholar
  7. Davis, R. H. (1970). Sources of urea in Neurospora. Biochim. Biophys. Acta 251412.Google Scholar
  8. Day, A. W., and Jones, J. K. (1968). The production and characterization of diploids in Ustilago violacea. Genet. Res. 1163.Google Scholar
  9. Day, A. W., and Jones, J. K. (1969). Sexual and parasexual analysis of Ustilago violacea. Genet. Res. 14195.Google Scholar
  10. Fishbein, W. N., Winter, T. S., and Dividson, J. D. (1965). Urease catalysis. I. Stoichiometry, specificity, and kinetics of a second substrate: Hydroxyurea. J. Biol. Chem. 2402402.Google Scholar
  11. Fishbein, W. N. (1969). The structural basis for the catalytic complexity of urease: Interacting and interconvertible molecular species (with a note on isozyme classes). N.Y. Acad. Sci. 147857.Google Scholar
  12. Gorin, G., and Chin, C. C. (1966). Urease. VI. A new method of assay and the specific enzymatic activity. Anal. Biochem. 1749.Google Scholar
  13. Haysman, P., and Howe, H. B. (1971). Some genetic and physiological characteristics of urease-defective strains of Neurospora crassa. Can. J. Gen. Cytol. 13256.Google Scholar
  14. Hubby, H. L., and Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila psuedoobscura. Genetics 54577.Google Scholar
  15. Kurzeja, K. C., and Garber, E. D. (1973). A genetic study of electrophoretically variant extracellular amylotic enzymes of wild-type strains of Aspergillus nidulans. Can. J. Genet. Cytol. 15275.Google Scholar
  16. Larson, K. J., and Kallio, R. E. (1954). Purification and properties of bacterial urease. J. Bact. 6867.Google Scholar
  17. Leob, W. F., and Stuhlman, R. A. (1969). A colorimetric method for the determination of serum arginase activity. Clin. Chem. 15152.Google Scholar
  18. Reithel, F. J., Robbins, J. E., and Gorin, G. (1964). A structural subunit molecular weight of urease. Arch. Biochem. 108409.Google Scholar
  19. Roon, R. J., and Levenberg, B. (1972). Urea amidolyase. I. Properties of the enzyme from Candida utilis. J. Biol. Chem. 2474107.Google Scholar
  20. Siegel, L. M., and Monty, K. J. (1965). Determination of molecular weights and frictional ratios of macromolecules in impure systems: Aggregation of urease. Biochem. Biophys. Res. Commun. 19494.Google Scholar
  21. Sumner, J. B. (1926). The isolation and crystallization of the enzyme urease. J. Biol. Chem. 69435.Google Scholar
  22. Summer, J. B., Graten, N., and Erikson-Quensel, I. (1938). The molecular weight of urease. J. Biol. Chem. 12537.Google Scholar
  23. West, N. B., and Garber, E. D. (1967). Genetic studies of variant enzymes. I. An electrophoretic survey of esterases and leucine aminopeptidases in the genus Phaseolus. Can. J. Genet. Cytol. 9640.Google Scholar
  24. Whitney, P. A., and Cooper, T. G. (1972). Urea carboxylase and allophanate hydrolase. Two components of adenosine triphosphate: Urea and lyase in Saccharomyces cerevisiae. J. Biol. Chem. 2471349.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Michael L. Baird
    • 1
  • Edward D. Garber
    • 2
  1. 1.Department of Human Genetics and DevelopmentColumbia UniversityNew York
  2. 2.Department of BiologyUniversity of ChicagoChicago

Personalised recommendations