Advertisement

Biochemical Genetics

, Volume 21, Issue 5–6, pp 465–475 | Cite as

Hepatic metallothionein synthesis in neonatal mottled-brindled mutant mice

  • John E. Piletz
  • Harvey R. Herschman
Article

Abstract

Mottled-brindled mutant mice did not display the elevated hepatic metallothionein synthesis normally observed in 2- to 6-day-old wild-type mice. This difference between normal and mutant mice was not due to a decreased ability to synthesize metallothionein in the liver, since hepatic metallothionein synthesis was inducible in response to copper, cadmium, zinc, or hydrocortisone administration to neonatal mutant mice. Hydrocortisone treatment resulted in increased metallothionein synthesis in liver of mutant mice but had no ameliorative effect on the mottled-brindled disease.

Key words

metallothionein copper mottled-brindled neonatal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, R. D., and Weser, U. (1978). Partial purification, characterization and translation in vitro of rat liver metallothionein messenger ribonucleic acid. Biochem. J. 175841.Google Scholar
  2. Bakka, A., and Webb, M. (1981). Metabolism of zinc and copper in the neonate: changes in the concentrations and contents of thionein-bound Zn and Cu with age in the livers of the newborn of various mammalian species. Biochem. Pharmacol. 30721.Google Scholar
  3. Bakka, A., Wickrama, S., and Webb, M. (1981). Metabolism of zinc and copper in the neonate: Effect of cadmium administration during late gestation in the rat on the zinc and copper metabolism of the newborn. Chem. Biol. Interact. 34161.Google Scholar
  4. Bell, J. U. (1979). Native metallothionein levels in rat hepatic cytosol during perinatal development. Toxicol. Appl. Pharmacol. 50101.Google Scholar
  5. Bremner, I., Hoekstra, W. G., Davies, N. T., and Young, B. W. (1978). Effect of zinc status of rats on the synthesis and degradation of copper-induced metallothioneins. Biochem. J. 174883.Google Scholar
  6. Camakaris, J., Mann, J. R., and Danks, D. M. (1979). Copper metabolism in mottled mouse mutants. Biochem. J. 180597.Google Scholar
  7. Camakaris, J., Danks, D. M., Ackland, L., Cartwright, E., Borger, P., and Cotton, R. G. H. (1980). Altered copper metabolism in cultured cells from human Menkes' syndrome and mottled mouse mutants. Biochem. Genet. 18117.Google Scholar
  8. Danks, D. M., Campbell, P. E., Walker-Smith, J., Stevens, B. J., Gillespie, J. M., Blomfield, J., and Turner, B. (1972). Menkes' kinky-hair syndrome. Lancet 11100.Google Scholar
  9. Etzel, K. R., Shapiro, S. G., and Cousins, R. J. (1979). Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem. Biophys. Res. Comm. 891120.Google Scholar
  10. Evans, G. W., and Reis, B. L. (1978). Impaired copper homeostasis in neonatal mice and adult female brindled (MoBR) mice. J. Nutr. 108554.Google Scholar
  11. Hager, L. J., and Palmiter, R. D. (1981). Transcriptional regulation of mouse liver metallotionein-1 gene by glucocorticoids. Nature 291340.Google Scholar
  12. Horn, N., and Heydorn, K. (1977). Prenatal detection of Menkes' disease and copper distribution in affected foetuses. Excerpt. Med. Int. Congr. Ser. 42656.Google Scholar
  13. Hunt, D. M. (1974). Primary defect in copper transport underlies mottled mutants in the mouse. Nature 249852.Google Scholar
  14. Hunt, D. M. (1976). A study of copper treatment and tissue copper levels in the murine congenital copper deficiency, mottled. Life Sci. 191913.Google Scholar
  15. Hunt, D. M., and Johnson, D. R. (1972). Aromatic amino acid metabolism in brindled (MoBR) and viable-brindled (MoVBR), Two alleles at the mottled locus in the mouse. Biochem. Genet. 631.Google Scholar
  16. Hunt, D. M., and Port, A. E. (1979). Trace element binding in the copper deficient mottled mutants in the mouse. Life Sci. 241453.Google Scholar
  17. Kägi, J. H. R., and Nordberg, M. (eds.) (1979). Proceeding of the first international meeting on metallothionein and other low molecular weight metal-binding proteins. Metallothionein Birkhauser Verlag, Boston.Google Scholar
  18. Karin, M., and Herschman, H. R. (1979). Dexamethasone stimulation of metallothionein synthesis in HeLa cell cultures. Science 204176.Google Scholar
  19. Keen, C. L., and Hurley, L. S. (1980). Developmental changes in concentrations of iron, copper, and zinc in mouse tissues. Mech. Age. Dev. 13161.Google Scholar
  20. LaBadie, G. U., Beratis, N. G., Price, P. M., and Hirschhorn, K. (1981). Studies of the copper-binding proteins in Menkes' and normal cultured skin fibroblast lysates. J. Cell. Physiol. 106173.Google Scholar
  21. Mann, J. R., Camakaris, J., Danks, D. M., and Walliczek, E. G. (1979). Copper metabolism in mottled mouse mutants. Biochem. J. 180605.Google Scholar
  22. Mann, J. R., Camakaris, J., and Danks, D. M. (1980). Copper metabolism in mottled mouse mutants. Biochem. J. 186629.Google Scholar
  23. Mann, J. R., Camakaris, J., Francis, N., and Danks, D. M. (1981). Copper metabolism in mottled mouse (Mus musculus) mutants. Biochem. J. 19681.Google Scholar
  24. Nagara, H., Yajima, K., and Suzuki, K. (1981). The effect of copper supplementation on the brindled mouse. J. Neuropathol. Exp. Neurol. 40428.Google Scholar
  25. Olafson, R. W. (1981). Differential pulse polarographic determination of murine metallothionein induction kinetics. J. Biol. Chem. 2561263.Google Scholar
  26. Onishi, T., Inubushi, H., Tokugawa, S., Muramatsu, M., Nishikawa, K., Suzuki, Y., and Miyao, M. (1980). Abnormal copper metabolism in Menkes' cultured fibroblasts. Eur. J. Pediatr. 134205.Google Scholar
  27. Port, A. E., and Hunt, D. M. (1979). A study of the copper-binding proteins in liver and kidney tissue of neonatal normal and mottled mutant mice. Biochem. J. 183721.Google Scholar
  28. Prins, H. W., and Van den Hamer, C. J. A. (1979). Primary biochemical defect in copper metabolism in mice with a recessive X-linked mutation analogous to Menkes' disease in man. J. Inorg. Biochem. 1019.Google Scholar
  29. Prins, H. W., and Van den Hamer, C. J. A. (1980). Abnormal copper-thionein synthesis and impaired copper utilization in mutated brindled mice: model for Menkes' disease. J. Nutr. 110151.Google Scholar
  30. Prins, H. W., and Van den Hamer, C. J. A. (1981a). Degradation of 35S-labeled metallothionein in the liver and the kidney of brindled mice: Model for Menkes' disease. Life Sci. 282953.Google Scholar
  31. Prins, H. W., and Van den Hamer, C. J. A. (1981b). Comparative studies of copper metabolism in liver and kidney of normal and mutated brindled mice—with special emphasis on metallothionein. Comp. Biochem. Physiol. 70C255.Google Scholar
  32. Rudd, C. J., and Herschman, H. R. (1978a). Metallothionein accumulation in response to cadmium in a clonal rat liver cell line. Toxicol. Appl. Pharmacol. 44511.Google Scholar
  33. Rudd, C. J., and Herschman, H. R. (1978b). Metallothionein in a human cell line: The response of HeLa cells to cadmium and zinc. Toxicol. Appl. Pharmacol. 47273.Google Scholar
  34. Ryden, L., and Deutsch, H. R. (1978). Preparation and properties of the major copper-binding component in human fetal liver. J. Biol. Chem. 253519.Google Scholar
  35. Squibb, K. S., Cousins, R. J., and Feldman, S. L. (1977). Control of zinc-thionein synthesis in rat liver. Biochem. J. 164223.Google Scholar
  36. Wenk, G., and Suzuki, K. (1982). The effect of copper supplementation on the concentration of copper in the brain of the brindled mouse. Biochem. J. 205485.Google Scholar
  37. Wong, K.-L., and Klaassen, C. D. (1979). Isolation and characterization of metallothionein which is highly concentrated in newborn rat liver. J. Biol. Chem. 25412399.Google Scholar
  38. Yeoh, G. C. T., Bennett, F. A., and Oliver, I. T. (1979). Hepatocyte differentiation in culture. Biochem. J. 180153.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • John E. Piletz
    • 1
  • Harvey R. Herschman
    • 1
  1. 1.Department of Biological Chemistry and Laboratory of Biomedical and Environmental SciencesUCLA School of MedicineLos Angeles

Personalised recommendations