Biochemical Genetics

, Volume 15, Issue 9–10, pp 859–876 | Cite as

Genetic control and developmental expression of malate dehydrogenase in Apis mellifera

  • E. P. B. Contel
  • M. A. Mestriner
  • E. Martins


Starch gel electrophoresis of extracts of Apis mellifera indicates that genetic variability exists for the enzyme cytoplasmatic malate dehydrogenase (E.C. Analysis of individuals throughout development indicates that the isozyme patterns are identical for larvae and adults and suggests a dimeric structure for the molecule. The isozyme pattern observed in pupae is more complex than that of larvae and adults and may be due to an additional pupalspecific MDH gene being expressed or to an epigenetic modification of the isozymes. Forty-three colonies with artificially inseminated queens were used to study the Mendelian pattern of inheritance. The data revealed that the MDH isozymes are encoded by three alleles, Mdh-1 A , Mdh-1 B , and Mdh-1 C . The frequency of the Mdh-1 alleles is different in two analyzed subspecies, A. m. adansonii (African bees) and A. m. ligustica (Italian bees), with Mdh-1 A and Mdh-1 B in the African bees being 0.768 and 0.202, respectively. For the Italian bees, these frequencies are 0.136 and 0:154, respectively.

Key words

polymorphism bees isozymes malate dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspinwall, N. (1974). Genetic analysis of duplicate malate dehydrogenase loci in the pink salmon, Oncorhynchus gorbuscha. Genetics 7665.Google Scholar
  2. Ayala, F. J., and Powell, J. R. (1972). Allozymes as diagnostic characters of a sibling species of Drosophila. Proc. Natl. Acad. Sci. 691094.Google Scholar
  3. Bailey, G. S., Wilson, A. C., Halver, J. E., and Johnson, C. L. (1970). Multiple forms of supernatant malate dehydrogenase in salmonoid fishes: Biochemical, immunological and genetic studies. J. Biol. Chem. 2455927.Google Scholar
  4. Benveniste, K. B. P., and Munkres, K. D. (1973). Effects of ionic concentration and pH upon the state of aggregation of Neurospora mitochondrial malate dehydrogenase. Biochem. Biophys. Res. Commun. 50711.Google Scholar
  5. Bryant, E. (1974). On the adaptative significance of enzyme polymorphisms in relation to environmental variability. Am. Nat. 1081.Google Scholar
  6. Contel, E. P. B., and Mestriner, M. A. (1974). Esterase polymorphisms at two loci in the social bee. J. Hered. 65349.Google Scholar
  7. Crozier, R. H. (1969). Chromosome number polymorphism in an Australian ponerine ant. Can. J. Genet. Cytol. 11333.Google Scholar
  8. Crozier, R. H. (1970). On the potential for genetic variability in haplo-diploidy. Genetica 41551.Google Scholar
  9. Crozier, R. H. (1973). Apparent differential selection at an enzyme locus between queens and workers of the ant Aphaenogaster rudis. Genetics 73313.Google Scholar
  10. Davidson, R. G., and Cortner, J. A. (1967). Genetic variant of human erythrocyte malate dehydrogenase. Nature (London), 215761.Google Scholar
  11. Fisher, R. A., and Harris, H. (1969). Studies on the purification and properties of the genetic variants of red cell acid phosphohydrolase in man. Ann. N.Y. Acad. Sci. 166380.Google Scholar
  12. Gonçalves, L. S. (1974). The introduction of the African bees (Apis mellifera adansonii) into Brazil and some comments on their spread in South America. Am. Bee. J. 114414.Google Scholar
  13. Harris, H. (1969). Genes and isozymes. Review lecture. Proc. R. Soc. London Ser. B 164298.Google Scholar
  14. Hopkinson, D. A. (1970). The investigation of reactive sulphydryls in enzymes and their variants by starch-gel electrophoresis: Studies on the human phosphohexose isomerase variant PHI 5-1. Ann. Hum. Genet. 3479.Google Scholar
  15. Hopkinson, D. A. (1974). Isozymes. J. Clin. Pathol. (Royal Coll. Pathol.) 8122 (Suppl. 24).Google Scholar
  16. Hopkinson, D. A., and Harris, H. (1969). The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis: Studies on red cell adenosine deaminase. Ann. Hum. Genet. 3381.Google Scholar
  17. Hubby, J. L., and Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudobscura. Genetics 54577.Google Scholar
  18. Jacobson, K. B. (1968). Alcohol dehydrogenase of Drosophila: Interconversion of isoenzymes. Science 159324.Google Scholar
  19. Johnson, F. M., Schaffer, H. E., Gillaspy, J. E., and Rockwood, E. S. (1969). Isozyme genotype-environment relationships in natural populations of the harvest ant, Pogonomyrmex barbatus from Texas. Biochem. Genet. 3429.Google Scholar
  20. Karig, L. M., and Wilson, A. C. (1971). Genetic variation in supernatant malate dehydrogenase of birds and reptiles. Biochem. Genet. 5211.Google Scholar
  21. Kerr, W. E. (1967) The history of the introduction of African bees in Brazil. S. Afr. Bee J. 393.Google Scholar
  22. Kitto, G. B., Stolzenbach, F. E., and Kaplan, N. O. (1970). Mitochondrial malate dehydrogenase: Further studies on multiple electrophoretic forms. Biochem. Biophys. Res. Commun. 3831.Google Scholar
  23. Lewis, W. H. P., and Harris, H. (1969). Peptidase D (prolidase) variants in man. Ann. Hum. Genet. 32317.Google Scholar
  24. Martins, E., Mestriner, M. A., and Contel, E. P. B. (1976). Alcohol dehydrogenase polymorphism in Apis mellifera. Biochem. Genet. 15 (3/4): 357.Google Scholar
  25. McReynolds, M. S., and Kitto, G. B. (1970). Purification and properties of Drosophila malate dehydrogenase. Biochim. Biophys. Acta 198165.Google Scholar
  26. Meizel, S., and Markert, C. L. (1967). Malate dehydrogenase isozymes of marine snail, Ilyanassa obsoleta. Arch. Biochem. Biophys. 122753.Google Scholar
  27. Mestriner, M. A. (1969). Biochemical polymorphism in bees (Apis mellifera liguistica). Nature (London), 223188.Google Scholar
  28. Mestriner, M. A., and Contel, E. P. B. (1972). The P-3 and Est loci in the honeybee Apis mellifera. Genetics 72733.Google Scholar
  29. Metcalf, R. A., Marlin, J. C., and Whitt, G. S. (1975). Low levels of genetic heterozygosity in Hymenoptera. Nature (London) 257792.Google Scholar
  30. Mukerji, S. K., and Ting, I. P. (1969). Malic dehydrogenase isoenzymes in green stem tissue of Opuntia: Isolation and characterization. Arch. Biochem. Biophys. 131336.Google Scholar
  31. Narang, S., and Narang, N. (1975). Malate dehydrogenase of a mosquito, Culex p. quinquifasciatus: Developmental changes polymorphism, and physicochemical characterization. Biochem. Genet. 1373.Google Scholar
  32. O'Brien, S. J. (1973). Comparative analysis of malate dehydrogenase of Drosophila melanogaster. Biochem. Genet. 10191.Google Scholar
  33. Pamilo, P., Vepsäläinen, K., and Rosengren, R. (1975). Low allozymic variability in Formica ants. Hereditas 80293.Google Scholar
  34. Povey, S., Corney, G., Lewis, W. H. P., Robson, E. B., Parrington, J. M., and Harris, H. (1972). The genetics of peptidase C in man. Ann. Hum. Genet. 35455.Google Scholar
  35. Shows, T. B., Chapman, V. M., and Ruddle, F. M. (1970). Mitochondrial malate dehydrogenase and malic enzyme: Mendelian-inherited electrophoretic variants in the mouse. Biochem. Genet. 4707.Google Scholar
  36. Sinha, K. P., and Hopkinson, D. A. (1969). The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis: Studies on the human red cell peptidase variant Pep. A 5-1. Ann. Hum. Genet. 33139.Google Scholar
  37. Smith, M., Hopkinson, D. A., and Harris, H. (1971). Developmental changes and polymorphism in human alcohol dehydrogenase. Ann. Hum. Genet. 34251.Google Scholar
  38. Smith, M., Hopkinson, D. A., and Harris, H. (1972). Alcohol dehydrogenase isozymes in adult human stomach and liver: Evidence for activity of the ADH 3 locus. Ann. Hum. Genet. 35243.Google Scholar
  39. Snyder, T. P. (1975). Lack of allozymic variability in three bee species. Evolution 28687.Google Scholar
  40. Suomalainen, E. (1962). Significance of parthenogenesis in the evolution of insects. Ann. Rev. Entomol. 7349.Google Scholar
  41. Swallow, D. M., and Harris, H. (1972). A new variant of the placental acid phosphatases: Its implications regarding their subunit structures and genetic determination. Ann. Hum. Genet. 36141.Google Scholar
  42. Tomaszewski, E. K., Schaffer, H. E., and Johnson, F. M. (1973). Isozyme genotype-environment associations in natural populations of the harvest ant, Pogonomyrmex badius. Genetics 75405.Google Scholar
  43. Wheat, T. E., and Whitt, G. S. (1971). In vivo and in vitro molecular hybridization of malate dehydrogenase isozymes. Experientia 27647.Google Scholar
  44. Wheat, T. E., Whitt, G. S., and Childes, W. F. (1972). Linkage relationships between the homologous malate dehydrogenase loci in teleosts. Genetics 70337.Google Scholar
  45. Wolfe, R. G., and Neilands, J. B. (1956). Some molecular and kinetic properties of heart malic dehydrogenase. J. Biol. Chem. 22161.Google Scholar
  46. Zee, D. S., and Zinkham, W. H. (1968). Malate dehydrogenase in Ascaris suum: Characterization, ontogeny and genetic control. Arch. Biochem. Biophys. 126574.Google Scholar
  47. Zee, D. S., Isensee, H., and Zinkham, W. H. (1970). Polymorphism of malate dehydrogenase in Ascaris suum. Biochem. Genet. 4253.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • E. P. B. Contel
    • 1
  • M. A. Mestriner
    • 1
  • E. Martins
    • 1
  1. 1.Departamento de GenéticaFaculdade de MedicineRibeirão PretoBrasil

Personalised recommendations