Water, Air, and Soil Pollution

, Volume 64, Issue 3–4, pp 585–600 | Cite as

Interacting effects of nutrients, pH - Al and elevated CO2 on the growth of red spruce (Picea rubens Sarg.) seedlings

  • B. Shipley
  • M. Lechowicz
  • S. Dumont
  • W. H. Hendershot


A 4 mo growth chamber experiment was conducted to evaluate the presence and importance of interactions between nutrient supply, atmospheric CO2 concentration, and four different combinations of pH — Al concentration on the growth, vitality, and tissue element concentrations of 1-yr-old red spruce seedlings. Solution chemistry was chosen to simulate soil conditions at a red spruce die-back site at Roundtop Mountain (Quebec) that has high acid loadings. CO2 levels were chosen to simulate ambient levels and those expected in the next century. All three experimental factors affected growth and all factors except CO2 affected the visual symptoms of die-back. There was an important interaction between nutrient levels and the different pH — Al combinations, indicating that the response of red spruce to various pH and Al concentrations changes with soil fertility. The positive growth response to enriched CO2 was not sufficient to offset the negative effects of the acid rain induced stresses. A principal component analysis showed that multivariate functions of foliar element concentrations could clearly distinguish plants from different experimental regimes.


Acid Rain Induce Stress Acid Loading Ambient Level Multivariate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, H. S., Stevenson, S. L., Blasing, T. J., and Duvick, D. N.: 1985, Environ Exp Bot 25, 315.Google Scholar
  2. Amundson, R. G., Alscher, R. G., Fellows, S., Rubin, G., Fincher, J., Van Leuken, P., and Weinstein, L. H.: 1991, New Phytol. 118, 127.Google Scholar
  3. Anderson, T. W.: 1958, An introduction to multivariate statistical analysis, Wiley, N. Y.Google Scholar
  4. Anonymous: 1977, Techicon Autoanalyser II Industrial Method 334-74b, Technicon Industrial Systems, Tarrytown, NY.Google Scholar
  5. Barcastou, R. B., Keeling, C. D., and Wharf, T. P.: 1985, J. Geophys. Res. 90, 10529.Google Scholar
  6. Cape, J. N., Leith, I. D., Fowler, D., Murray, M. B., Sheppard, L. J., Eamus, D., and R. H. F. Wilson: 1991, New Phytol. 118, 119.Google Scholar
  7. Cronan, C. S., April, R., Bartlett, R. J., Bloom, P. R., Driscoll, C. T., Deans, J. B., Leith, I. D., Sheppard, L. J., Cape, J. N., Fowler, D., Murray, M. B. and Mason, P. A.: 1990, New Phytol. 115, 459.Google Scholar
  8. Fincher, J., Gumming, J. R., Alscher, R. G., Rubin, G., and Weinstein, L.: 1989, New Phytol. 113, 85.Google Scholar
  9. Fowler, D., Cape, J. N., Deans, J. D., Leith, I. D., Murray, M. B., Smith, R. I., Sheppard, L. J., and Unsworth, M. H.: 1989, New Phytol. 113, 321.Google Scholar
  10. Foy, C. D.: 1984, Physiological effects of hydrogen, aluminum and manganese toxicity in acid soil, pp. 57–97, in F. Adams (ed.) Soil acidity and liming, 2nd edition Agronomy Monographs 12, ASA, Madison, WI.Google Scholar
  11. Gammon, R. H., Sundquist, E. T., and Fraser, P. J.: 1985, History of carbon dioxide in the atmosphere, pp. 26–62, in Trabalka, J. R. (ed.) Atmospheric carbon dioxide and the overall carbon cycle, U. S. Departement of Energy, Washington DC.Google Scholar
  12. Geballe, G. T., Smith, W. H., and Wargo, P. M.: 1990, Can. J. For. Res. 20, 1680.Google Scholar
  13. Gherini, S. A., Henderson, G. S., Joslin, J. D., Kelly, J. M., Newton, R. M., Parnell, R. A., Patterson, H. H., Raynal, D. J., Schaedle, M., Schofield, C. L., Sucoff, E. L., Tepper, H. B., and Thornton, F. C.: 1989, Water, Air, and Soil Pollut. 48, 181.Google Scholar
  14. Graham, R. L., Turner, M. G., and Dale, V. H.: 1990, Bioscience 40, 575.Google Scholar
  15. Graumlich, L. J.: 1991, Ecology 72, 1.Google Scholar
  16. Hicks, C. R.; 1973, Fundamental concepts in the design of experiments, Holt, Rinehart & Winston, N. Y.Google Scholar
  17. Hendershot, W. H.: 1991, Fertilizer Research 27, 63.Google Scholar
  18. Hendershot, W. H., Courchesne, F., and Schemenauer, R. S.: 1991, Water Air, and Soil Pollut. 60, 11.Google Scholar
  19. Huettl, R. F. and Wisniewski, J.: 1987, Water, Air, and Soil Pollut. 33, 265.Google Scholar
  20. Huttermann, A.: 1985, Experimentia 41, 584.Google Scholar
  21. Johnson, A. H. and Siccama, T. J.: 1983, Environ. Sci. Technol. 17, 294.Google Scholar
  22. Johnson, A. H. and McLaughlin, S. B.: 1986, The nature and timing of the deterioration of red spruce populations in Appalachian forests, pp. 200–230, in Monitoring and assessing trends in acidic deposition, National Academy of Sciences, National Academic Press, Washington, DC.Google Scholar
  23. Joslin, J. D. and Wolfe, M. H.: 1988, Can. J. For. Res. 18, 1614.Google Scholar
  24. Kienast, F. and Luxmoore, R. J.; 1988, Oecologia 76, 487.Google Scholar
  25. Kramer, P. J. and Sionit, N.: 1987, Effect of increasing carbon dioxide concentration on the physiology and growth of forest trees, in Shands, W. E. and Hoffman, J. S. (eds), The Greenhouse Effect, Climate Change, and U. S. Forests, The Conservation Foundation, Washington D.C.Google Scholar
  26. LaMarche, V. C. Jr., Graybill, D. A., Fritts, H. C., and Rose, M. R.: 1984, Science 225, 1019.Google Scholar
  27. LeBlanc, D. C.: 1990, Can. J. For. Res. 20, 1408.Google Scholar
  28. McLaughlin, S. B.: 1985, J. Air Pollut. Control Assoc. 35, 516.Google Scholar
  29. McLaughlin, S. B., Downing, D. J., Biasing, T. J., Cook, E. R., and Adams, H. S.: 1987, Oecologia 72, 487.Google Scholar
  30. Millet, E. and Zaccai, M.: 1989, J. Plant Nutrition 12, 803.Google Scholar
  31. Potvin, C., Lechowicz, M. J., Bell, G., and Schoen, D.: 1990, Can. J. Bot. 68, 499.Google Scholar
  32. Raynal, D. J., Joslin, J. D., Thornton, F. C., Schaedle, M., and Henderson, G. S.: 1990, J. Environ. Qual. 19, 180.Google Scholar
  33. Reich, P. B., Schoettle, H. F., Stroo, R. G., and Amundson, R. G.: 1986, J. Air Pollut. Control Assoc. 36, 724.Google Scholar
  34. Robarge, W. P. and Fernandez, I.: 1986, Quality Assurance Methods Manual for Laboratory Techniques, Corvallis Environmental Research Laboratory, Corvallis, OR.Google Scholar
  35. SAS Institute Inc.: 1988, SAS/STAT TM User's Guide, Release 6.03 Edition, Cary.Google Scholar
  36. Schroeder, W. H., Bauch, J., and Endeward, R.: 1988, Trees 2, 96.Google Scholar
  37. Seiler, J. R. and Paganelli, D. J.: 1987, For. Sci. 33, 668.Google Scholar
  38. Shemenauer, R. S., Schuepp, P. H., Kermasha, S., and Cereceda, P.: 1988, ‘Measurements of the properties of high elevation fog in Quebec, Canada’, in M. H. Unsworth and D. Fowler (eds), Acid Deposition at High Elevation Sites, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  39. Sucoff, E., Thornton, F. C., and Joslin, J. D.: 1990, J. Environ. Qual. 19, 63.Google Scholar
  40. Taylor, G. E., Norby, R. J., McLaughlkin, S. B., Johnson, A. H., and Turner, R. S.: 1986, Oecologia 70, 163.Google Scholar
  41. Tritton, L. M. and Siccama, T. G.: 1990, Bull. Torrey Bot. Club 117, 163–166.Google Scholar
  42. Urlich, B., Mayer, R., and Khanna, P. K.: 1980, Soil Sci. 130, 193–199.Google Scholar
  43. Wilson, D.: 1984, Soil Sci. Plant Anal. 15, 1269–1279.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • B. Shipley
    • 1
  • M. Lechowicz
    • 1
  • S. Dumont
    • 1
  • W. H. Hendershot
    • 2
  1. 1.Department of BiologyMcGill UniversityMontrealCanada
  2. 2.Department of Renewable ResourcesMacdonald Campus of McGill UniversityCanada

Personalised recommendations