Water, Air, and Soil Pollution

, Volume 84, Issue 1–2, pp 1–10

Insecticide (Carbaryl, 1-napthyl-N-methylcarbamate) effects on a freshwater plankton community: Zooplankton size, biomass, and algal abundance

  • K. E. Havens


Natural plankton communities were enclosed in mesocosms and exposed to nine dose levels (0 to 100 μg L−1) of the insecticide Carbaryl. Plankton responses were determined after 4 day in situ incubations. Total Zooplankton biomass and mean individual biomass declined significantly across the range of treatments. Daphnia were not found at concentrations above 20 μg L−1 and all cladocerans were absent at > 50 μg L−1 Carbaryl. In the higher dose treatment, copepods (Skistodiaptomus and Mesocyclops) became extreme dominants. The decline in Zooplankton biomass, and the selective elimination of Daphnia led to increases in algal biomass, especially among small flagellates which are unavailable to the raptorial copepods. Across the range of insecticide dose levels, there was a repartitioning of biomass from Zooplankton to phytoplankton, while total plankton biomass was unchanged.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, J. L.: 1969, In Eutrophication: Consequences, Correctives. Nat. Acad. Sci., Washington, DC, 155 pp.Google Scholar
  2. Culver, D. A., Boucherla, M. M., Bean, D. J. and Fletcher, J. W.: 1985, Can. J. Fish. Aquat. Sci. 42, 1380.Google Scholar
  3. Geller, W. and Muller, H.: 1981, Oecologia 49, 316.Google Scholar
  4. Gliwicz, Z. M.: 1990, Hydrobiol. 194, 83.Google Scholar
  5. Hanazato, T. and Yasuno, M.: 1990, Hydrobiol. 194, 183.Google Scholar
  6. Havens, K. E.: 1992, Can. J. Fish. Aquat. Sci. 49, 2507.Google Scholar
  7. Havens, K. E.: 1993, Environ. Pollut. 84, (in press).Google Scholar
  8. Havens, K. E. and Hanazato, T.: 1993, Environ. Pollut. 82, 277.Google Scholar
  9. Havens, K. E. and Heath, R. T.: 1989, Environ. Pollut. 62, 195.Google Scholar
  10. Havens, K. E. and Heath, R. T.: 1990, Environ. Pollut. 68, 129.Google Scholar
  11. Hughes, D. N., Boyer, M. G., Papst, M. H. and Fowle, C. D.: 1980, Arch. Environ. Contam. Toxicol. 9, 269.Google Scholar
  12. Nival, P. and Nivals, S.: 1976, Limnol. Oceanogr. 21, 24.Google Scholar
  13. Papst, M. H. and Boyer, M. G.: 1980, Hydrobiol 69, 245.Google Scholar
  14. Pimentai, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horwitz, A. and D'Amore, M.: 1992, BioScience 42, 750.Google Scholar
  15. Porter, K. G., Paerl, H., Hodgson, R., Pace, M., Priscu, J., Rieman, B., Scavia, D. and Stockner, J.: 1988, in Carpenter, S. R. (ed.), Complex Interactions in Lake Communities, Springer-Verlag, NY, 283 pp.Google Scholar
  16. SAS: 1990, SAS/STAT User's Guide, Version 6, 4th Edition. SAS Institute, NC, 1686 pp.Google Scholar
  17. Schindler, D. W.: 1990, Oikos 57, 25.Google Scholar
  18. Wylie, J. L. and Currie, D. L.: 1991, Limnol. Oceanogr. 36, 708.Google Scholar
  19. Yasuno, M.: 1991, in Hodgson, E., Motoyama, N. and Roe, R. M. (eds.), Pesticides and the Future: Toxicological Studies of Risks and Benefits, North Carolina State University Press, NC.Google Scholar
  20. Yasuno, M., Hanazato, T., Iwakuma, T., Takamura, K., Ueno, R. and Takamura, N.: 1988, Hydrobiol. 159, 247.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • K. E. Havens
    • 1
  1. 1.Kent State UniversityOhioUSA
  2. 2.Department of ResearchSouth Florida Water Management DistrictWest Palm Beach

Personalised recommendations