Water, Air, and Soil Pollution

, Volume 69, Issue 3–4, pp 363–391 | Cite as

Growth, physiology, and nutrition of loblolly pine seedlings stressed by ozone and acidic precipitation: A summary of the ropis-south project

  • J. M. Kelly
  • G. E. TaylorJr.
  • N. T. Edwards
  • M. B. Adams
  • G. S. Edwards
  • A. L. Friend
Article

Abstract

Previously published results from a multidisciplinary research program, Response of Plants to Interacting Stress (ROPIS), initiated by the Electric Power Research Insitute are summarized here. The overall objective of the ROPIS program was to develop a general mechanistic theory of plant response to air pollutants and other stresses. Direct and indirect phytotoxic impacts of O3 combined with induced deficiencies of key nutrients as a consequence of acidic deposition are important components in many of the hypotheses used to explain reported declines in forest growth. In order to address these concerns as they relate to loblolly pine (Pinus taeda L.) growth and develop a greater level of mechanistic understanding of stress response, a study was formulated with two major objectives: (i) over a multi-yr period evaluate the role of loblolly pine genotype in governing loblolly growth response to O3; and (ii) determine the underlying physiological and edaphic basis for loblolly growth response to O3, acidic precipitation, and soil Mg status. An open-top chamber facility located at Oak Ridge, TN provided controlled O3 exposure for the genotype screening study (1986–88) and controlled O3 exposure and rainfall exclusion and addition for the O3-rainfall acidity-soil Mg interaction study (1987–89). A variety of experimental techniques, measurements, and statistical procedures were used over a 4-yr period to quantify various aspects of plant growth, physiology, and soil-plant relationships. Results from the genotype screening study indicate that although family-specific O3 effects were observed at the end of the first year, no statistically significant O3 effects on diameter, height, or total biomass were evident at the end of three growing seasons; nor were any significant O3-family interactions found. In the interaction study, rainfall acidity and soil Mg level had only minimal affects on seedling growth and physiology. Ozone exposure produced significant changes in many variables, the most important being a net retention of carbon in above-ground biomass and a subsequent reduction in carbon allocation to the root system. This change could have important longterm implications for the tree's ability to obtain water and nutrients, maintain important rhizosphere organisms, and achieve a level of vigor that protects against disease and insect attack.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouguendia, Z. M. and Baschak, L. A.: 1987, Water, Air, and Soil Pollut. 33, 15.Google Scholar
  2. Adams, M. B., Kelly, J. M., and Edwards, N. T.: 1988, Water. Air, and Soil Pollut. 38, 137.Google Scholar
  3. Adams, M. B., Edwards, N. T., Taylor, Jr., G. E., and Skaggs, B. L.: 1990a, Can. J. For. Res. 20, 152.Google Scholar
  4. Adams, M. B., Kelly, J. M., Taylor, Jr., G. E., and Edwards, N. T.: 1990b, New Phytol. 116, 689.Google Scholar
  5. Brown, K. A. and Roberts, T. M.: 1988, Environ. Poll. 55, 55.Google Scholar
  6. Edwards, G. S., Edwards, N. T., Kelly, J. M., and Mays, P. A.: 1991, Environ. Exp. Bor. 31, 67.Google Scholar
  7. Edwards, G. S., Friend, A. L., O'Neill, E. G., and Tomlinson, P. T.: 1992b, Can. J. For. Res. 22, 640.Google Scholar
  8. Edwards, G. S., Kelly, J. M., and Mays, P. A.: 1992c, Water, Air, and Soil Pollut. 63, 281.Google Scholar
  9. Edwards, N. T., Adams, M. B., Taylor, Jr., G. E., Simmons, G. L., and Kelly, J. M.: 1990, Tree Physiol. 6, 95.Google Scholar
  10. Edwards, N. T.: 1991, New Phytol. 118, 315.Google Scholar
  11. Edwards, N. T., Edwards, G. S., Kelly, J. M., and Taylor, Jr., G. E.: 1992a, Water, Air, and Soil Pollut. 63, 105.Google Scholar
  12. Friend, A. L. and Tomlinson, P. T.: 1992, Tree Physiol. 11, 215.Google Scholar
  13. Friend, A. L., Tomlinson, P. T., Dickson, R. E., O'Neill, E. G., Edwards, N. T., and Taylor, Jr., G. E.: 1992, Tree Physiol. 11, 35.Google Scholar
  14. Fries, N., Bardet, M., and Serck-Hanssen, K.: 1985, Plant Soil. 86, 287.Google Scholar
  15. Grant, L. F., and Harvey, A. E.: 1982, ‘Quantitative Measurement of Ectomycorrhizae on Plant Roots’, in N. C. Schenck (ed.), Methods and Principles of Mycorrhizal Research, Am. Phytopath. Soc., St. Paul, MN.Google Scholar
  16. Hanson, P. J., McLaughlin, S. B., and Edwards, N. T.: 1988, Physiol. Plant. 74, 635.Google Scholar
  17. Haynes, R. J.: 1986, Mineral Nitrogen in the Plant-Soil System, Academic Press, Inc. Orlando, FL.Google Scholar
  18. Hiscox, J. P. and Israelstam, G. F.: 1979, Can. J. Bot. 57, 1332.Google Scholar
  19. Hogsett, W. E., Tingey, D. T., and Lee, E. H.: 1988, ‘Ozone Exposure Indices: Concepts for Development and Evaluation of Their Use’, in W. W. Heck, O. C. Taylor, and D. T. Tingey (eds.) Assessment of Crop Loss from Air Pollutants, Elsevier Applied Science, New York.Google Scholar
  20. Irving, P. M.: 1985, Environ. Exp. Bot. 25, 327.Google Scholar
  21. Jacobson, J. S., Lassoie, J. P., Osmeloski, J., and Yamada, K.: 1989, Water, Air, and Soil Pollut. 48, 141.Google Scholar
  22. Jonhson, D. W., Kelly, J. M., Swank, W. T., Cole, D. W., Hornbeck, J. W., Pierce, R. S., and Van Lear, D.: 1988, J. Environ. Qual. 17, 418.Google Scholar
  23. Johnson, D. W. and Lindberg. S. E. (eds.): 1992, Atmospheric Deposition and Forest Nutrient Cycling, Springer-Verlag, New York.Google Scholar
  24. Johnston, Jr., J. W., Shriner, D. S., and Abner, C. A.: 1986, J. Air Pollut. Control Assoc. 36, 894.Google Scholar
  25. Kelly, J. M. and S. A. Barber: 1991, Plant Soil 134, 227.Google Scholar
  26. Kress, L. W., Allen, H. L., Mudano, J. E., and Heck, W. W.: 1988, ‘Ozone Effects on the Growth of Loblolly Pine’, in J. B. Bucher and I. Bucher-Wallin (eds.), Air Pollution and Forest Decline, Proc 14th Int. Meeting for Specialist in Air Pollution Effects of Forest Ecosystems, IUFRO p2.05, Interlaken, Switzerland.Google Scholar
  27. Leininger, T. D. and Winner, W. E.: 1985, Phytopath. 75, 626.Google Scholar
  28. Leininger, T. D. and Winner, W. E.: 1988, Can. J. For Res. 18, 478.Google Scholar
  29. Lichtenhaler, H. K. and Wellburn, A. R.: 1983, Biochem. Soc. Trans. 603, 591.Google Scholar
  30. MacDonald, N. W., Hart, J. B., and Nguyen, P. V.: 1986, Soil Sci. Soc. Am J. 50, 219.Google Scholar
  31. MacIntire, W. H. and Young, J. B.: 1923, Soil Sci. 15, 205.Google Scholar
  32. Margolis, H. A. and Waring, R. H.: 1986, Can. J. For. Res. 16, 879.Google Scholar
  33. McEvers, J. A., Bowers, T. L., and Edwards, N. T.: 1988, ‘Air Pollution Effects Field Research Facility. I. Ozone Flow Control and Monitoring System’, ORNL/TM-10758. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.Google Scholar
  34. McLaughlin, S. B. and Madgwick, H. A. I.: 1968, Amer. Midland Natur. 80, 547.Google Scholar
  35. McLaughlin, S. B.: 1985, J. Air Pollut. Control Assoc. 35, 512.Google Scholar
  36. McLaughlin, S. B., Adams, M. B., Edwards, N. T., Hanson, P. J., Layton, P. A., O'Neill, E. G., and Roy, W. K.: 1988, ‘Comparative Sensitivity, Mechanisms and Whole-Plant Implications of Responses of Loblolly Pine Genotypes to Ozone and Acidic Deposition’, ORNL/TM-10777. Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  37. Meagher, J. F., Lee, N. T., Valente, R. J., and Parkhurst, W. J.: 1987, Atmos. Environ. 21, 605.Google Scholar
  38. Meier, S., Robarge, W. P., Brack, R. I., and Grand, L. F.: 1989, Environ. Pollut. 59, 315.Google Scholar
  39. Mengel, K., Hogrebe, A. M. R. and Esch, A.: 1989, Physiol. Plant. 75, 201.Google Scholar
  40. Morrison, D. F.: 1976, Multivariate Statistical Methods, 2nd Ed. McGraw-Hill, New York.Google Scholar
  41. Pfirrmann, T., Runkel, K. H., Schramel, P., and Eisenmann, T.: 1990, Environ. Pollut. 64, 229.Google Scholar
  42. SAS Institute: 1985, SAS User's Guide, SAS Institute, Inc. Raleigh, NC.Google Scholar
  43. Schier, G. A.: 1970, For. Sci. 16, 2.Google Scholar
  44. Shafer, S. R. and Heagle, A. S.: 1989, Can. J. For. Res. 19, 821.Google Scholar
  45. Shafer, S. R., Heagle, A. S., and Camberato, D. M.: 1987, J. Air Pollut. Control Assoc. 37, 1179.Google Scholar
  46. Sheffield, R. M., Cost, N. D., Betchold, W. A., and McClure, J. P.: 1985, Pine growth reductions in the Southeast, USDA Forest Serv. Resour. Bull. SE-83, Southeastern Forest Experiment Station, USFS, Asheville, NC.Google Scholar
  47. Sheffield, R. M. and Cost, N. D.: 1987, J. For. 85, 29.Google Scholar
  48. Shiroya, T., Lister, G. R., Slankis, V., Krotkov, G., and Nelson, C. D.: 1966, Annals Bot. 30, 81.Google Scholar
  49. Simmons, G. L. and Kelly, J. M.: 1989a, Water, Air, and Soil pollut. 43, 199.Google Scholar
  50. Simmons, G. L. and Kelly, J. M.: 1989b, Water, Air, and Soil Pollut. 44, 159.Google Scholar
  51. Skeffington, R. A. and Roberts, T. M.: 1985, Oecologia 65, 201.Google Scholar
  52. Sucoff, E. I.: 1961, ‘Potassium, Magnesium, and Calcium Deficiency Symptoms of Loblolly and Virginia Pine Seedlings’, NE for. Exp. Sta. Paper No. 164.Google Scholar
  53. Taylor, Jr., G. E., Edwards, N. T., Adams, M. B., Friend, A. L., Dickson, R. E., Grizzard, T., Gunderson, C. A., O'Neill, E. G., McEvers, J. A., and Tomlinson, P. T.: 1991, Influence of Ozone, Acidic Precipitation and Soil Magnesium Status on the Physiology and Growth of Pinus Taeda L. (Loblolly Pine) Under Field Conditions. Desert Research Institute, Biological Sciences Center Report, University of Nevada System, Reno NV.Google Scholar
  54. Taylor, Jr., G. E., Owens, J. G., Grizzard, T., and Selvidge, W. J.: 1992, J. Environ. Qual. 22, 70.Google Scholar
  55. Tingey, D. T., Wilhour, R. G., and Standley, C.: 1976, For. Sci. 22, 234.Google Scholar
  56. Tingey, D. T. and Taylor, Jr., G. E.: 1982, ‘Variation in plant Response to Ozone: A Conceptual Model of Physiological Events’, in M. H. Unsworth and D. P. Ormrod (eds.), Effects of Gaseous Pollutants on Agriculture and Horticulture, Butterworth Scientific, Londen.Google Scholar
  57. Tjoelker, M. G. and Luxmoore, R. J.: New Phytol. 119, 69.Google Scholar
  58. Tomlinson, P. T. and Friend, A. L.: 1991, Plant Phys. 96, 99.Google Scholar
  59. Turner, D. P. and Tingey, D. T.: 1990, Water, Air, and Soil Pollut. 49, 205.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. M. Kelly
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • G. E. TaylorJr.
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • N. T. Edwards
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • M. B. Adams
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • G. S. Edwards
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • A. L. Friend
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.TVA, Cooperative Forest Studies ProgramOak RidgeUSA
  2. 2.Desertc Research Institute and Department of Environmental and Resource SciencesUniv. of NevadaReno
  3. 3.Oak Ridge National LaboratoryOak Ridge
  4. 4.USDA-Forest ServiceParsons
  5. 5.TVA, Norris
  6. 6.Forestry DepartmentMississippi State University

Personalised recommendations