Water, Air, and Soil Pollution

, Volume 69, Issue 3–4, pp 277–290 | Cite as

Radioactivity and chemical characteristics of Alberta phosphogypsum

  • S. M. Luther
  • M. J. Dudas
  • P. M. Rutherford
Article

Abstract

Gypsum based by-products of phosphate fertilizer production, termed phosphogypsum (PG), are stockpiled at numerous locations worldwide. Although dominated by gypsum, PG contains accessory minerals, trace elements, and radionuclides. This study was conducted to characterize the composition and pore water chemistry of PG samples from a plant site in southern Alberta, Canada. Pore water chemistry was studied by equilibrating PG with deionized water for 80 days; the aqueous phase was then analyzed for dissolved constituents.

The PG samples had pH levels of 4.0 or lower and contained gypsum and minor amounts of quartz, phosphate rock and sodium feldspar. The PG was elevated in total content of Ag, Au, Ca, Cd, P, S, Se, Sr, U and some of the light rare earth elements and Y relative to shale. Average 226Ra activity, determined by the radon emanation method, was 890 Bq kg−1. Activity of 212Pb, in equilibrium with 228Th, was 5.8 Bq kg−1. Pore water concentrations of As, Cd, Cr, Cu, Fe, Mn, Na, NO3-N, Se, SO42−-S, and Zn exceeded drinking water standards in some PG samples. Although closer to flue gas desulfurization sludge in mineralogy, the pore water chemistry of PG is more like that of some fly ashes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, K. H.: 1986, ‘Techniques for Chemical Analysis of Radionuclides in Fly Ash: An Evaluation’, Batelle Pacific Northwest Lab., Elec. Pow. Res. Ins., Palo Alto, Ca., EA-4728.Google Scholar
  2. Altschuler, Z. S.: 1980, Soc. Paleont. Spec. Publ. 29, 19.Google Scholar
  3. Balashov, Y. A., Ronov, A. B., Migdisov, A. A., and Turanskaya, N. V.: 1964, Geochem. 5, 951.Google Scholar
  4. Berish, C. W.: 1990, ‘Potential Environmental Hazards of Phosphogypsum Storage in Central Florida’, in 3rd Int. Symp. on Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 1–29.Google Scholar
  5. Blight, G. E.: 1969, ‘Waste Gypsum as an Embankment Material’, in Proc. 7th Int. Conf. Soil Mech. Found. Eng., Mexico, pp. 39–43.Google Scholar
  6. Bohn, W. E., McNeal, B. L., O'Conner, G. A.: 1985, Soil Chemistry, John Wiley and Sons, New York.Google Scholar
  7. Carmichael, J. B.: 1986, ‘World Wide Production and Utilization of Phosphogypsum’, in 2nd Int. Symp. on Phoshogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 105–110.Google Scholar
  8. Coles, D. G., Meadows, J. W. T., and Lindeken, C. L.: 1976, Sci. Total Environ. 5, 171.Google Scholar
  9. Coles, D. G., Ragaini, R. C., and Ondov, J. M.: 1978, Environ. Sci. Technol. 12, 442.Google Scholar
  10. Collings, R. K.: 1980, ‘Phosphogypsum in Canada’, in 1st Int. Symp. on Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 583–596.Google Scholar
  11. Doner, H. and Lynn, W. C.: 1989, ‘Carbonate, Halide, Sulfate and Sulfide Minerals’, in J. B. Dixon and S. B. Weed (eds.), Minerals in Soil Environments, 2nd ed., Soil Sci. Soc. Am., Madison, WI., pp. 279–330.Google Scholar
  12. Eary, L. E., Rai, D., Mattigod, S. V., and Ainsworth, C. C.: 1990, J. Environ. Qual. 19, 202.Google Scholar
  13. Federal-Provincial Subcommittee on Drinking Water: 1989, Guidelines for Canadian Drinking Water Quality, 4th ed., Health and Welfare Canada, Ottawa, Ont.Google Scholar
  14. Fresenius, W., Quentin, K. E., and Schnieder, W. (eds.): 1988, Water Analysis. A Practical Guide to Physico-chemical, Chemical and Microbiological Water Examination and Quality Assurance, Springer Verlag, Berlin.Google Scholar
  15. Fleischer, M. and Altschuler, Z. S.: 1969, Geochim. Cosmochim, Acta. 33, 725.Google Scholar
  16. Guimond, R. J.: 1976, ‘Radiation and the Phosphate Industry-an Overview,’ in Natural Radiation in Man's Environment, Proc. Health Phys. Soc. 10th Midyear Topical Symp., Troy, NY., pp. 13–28.Google Scholar
  17. Gulbrandsen, R. A.: 1966, Geochim. Cosmochim. Acta. 30, 769.Google Scholar
  18. Henderson, P.: 1984, Rare Earth Element Geochemistry, Elsevier, Amsterdam.Google Scholar
  19. Hendry, M. J., Cherry, J. A., and Wallick, E. I.: 1986, Water Resources Research. 22, 45.Google Scholar
  20. Hurst, F. J., and Arnold, WE. E.: 1980, ‘Uranium Control in Phosphogysum’, in 1st Int. Symp. on Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 368–382.Google Scholar
  21. Keeney, D. R. and Nelson, D. W.: 1982, ‘Nitrogen — Inorganic Forms’, in A. L. Page (ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed., No. 9 Agron. Ser., Amer. Soc. Agron. Inc., and Soil Sci. Soc. Am. Inc., Madison, WI., pp. 643–698.Google Scholar
  22. Kiss, J. J., de Jong, E., and Bettany, J. R.: 1988, J. Environ. Qual. 17, 437.Google Scholar
  23. Kittrick, J. A.: 1971, Soil Sci. Soc. Am. Proc. 35, 140–145.Google Scholar
  24. Kobal, I., Brajnik, D., Kaluza, F., and Vengust, M.: 1990, Health Phys. 58, 81.Google Scholar
  25. Kouloheris, A. P.: 1980, ‘Chemical Nature of Phosphogypsum as Produced by Various Wet Process Phosphoric acid processes’, in 1st Int. Symp. on Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 7–34.Google Scholar
  26. Krauskopf, K. B.: 1955, Econ. Geog. 50th Aniv. Vol., 411.Google Scholar
  27. Krauskopf, K. B.: 1979, Introduction to Geochemistry, McGraw-Hill, New York.Google Scholar
  28. Kushnir, J.: 1980, Geochim. Cosmochim. Acta. 44, 1471.Google Scholar
  29. Laiche T. P., and Scott, L. P.: 1991, Health Phys., 60, 691.Google Scholar
  30. Lardinoye, M. H., Weterings, K., and van de Berg, W. B.: 1982. Health Phys. 42, 503.Google Scholar
  31. Malhi, S. S., Nyborg, M., Walker, D. R., and Laverty, D. H.: 1985, Can. J. Soil Sci. 65, 339.Google Scholar
  32. Mattigod, S. V., Rai, D., Eary, L. E., and Ainsworth, C. C.: 1990, J. Environ. Qual. 19, 188.Google Scholar
  33. May, A., and Sweeney, J. W.: 1980, ‘Assessment of Environmental Impacts Associated with Phosphogypsum in Florida’, in 1st Int. Symp. on Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 415–442.Google Scholar
  34. May, A., and Sweeney, J. W.: 1984a, ‘Assessment of Environmental Impacts Associated with Phosphogypsum in Florida’, in R. A. Kuntze (ed.), The Chemistry and Technology of Gyosum, ASTM STP 861, American Society for Testing and Materials, pp. 116–139.Google Scholar
  35. May, A. and Sweeney, J. W.: 1984b, ‘Evaluation of Radium and Toxic Elements Leaching Characterisitcs of Florida Phosphogypsum Stockpiles’, in R. A. Kuntze (ed.), The Chemistry and Technology of Gypsum, ADTM STP 861, American Society for Testing and Materials, pp. 140–159.Google Scholar
  36. McBeath, I.: 1987, ‘Review of the Canadian Fertilizer Industry and Evaluation of Control Technology’, Environ. Canada Rep., EPS 2/AG/1.Google Scholar
  37. Murray, L. C. and Lewis, B. G.: 1985, J. Envir. Eng. 3, 681.Google Scholar
  38. Myrick, T. E., Berven, B. A., and Haywood, F. F.: 1983, Health Phys. 45, 631.Google Scholar
  39. Neal, R. H.: 1990, ‘Selenium’, in B. J. Alloway (ed.), Heavy Metals in Soils, John Wiley and Sons Inc., New York, NY, pp. 237–260.Google Scholar
  40. Peech, M.: 1865, ‘Hydrogen-ion Activity’, in C. A. Black (ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, No. 9 Agron. Ser., Amer. Soc. Agron., Inc., Madison, WI., pp. 914–926.Google Scholar
  41. Roberts Thorne, W. E.: 1990, ‘Reclamation of a Phosphogypsum Tailings Pond: An Examination of the Relevant Issues’, Master of Environ. Design Thesis, Univ. of Calgary, Calgary, Alta.Google Scholar
  42. Roessler, C. E.: 1986, ‘Radiological Assessment of the Application of Phosphogypsum, Florida Inst. Phosphate Res., Miami, FL., pp. 5–24.Google Scholar
  43. Roessler, C. E., Smith, Z. A., Bolch, W. E., and Prince, R. J.: 1979, Health Phys. 37, 269.Google Scholar
  44. Ronov, A. B., Balasnov, Yu. A., and Migdisov, A. A.: 1967, Geochem. Int. 4, 1.Google Scholar
  45. SENES Consultants Limited: 1987, ‘An Analysis of the Major Environmental and Health Concerns of Phosphogypsum Tailings in Canada and Methods for Their Reduction’, Ontario Min. Environ., Alberta Environ., and Environ. Canada.Google Scholar
  46. Sposito, G.: 1989, The Chemistry of Soils, Oxford Univ. Press, Oxford.Google Scholar
  47. Stevenson, D. R. and Borneuf, D. M.: 1977, ‘Hydrogeology of the Medicine Hat Area, Alberta’, Report 75-2, Alberta Research Council, Edmonton.Google Scholar
  48. Tabatabai, M. A. and Bremner, J. M.: 1970, Soil Sci. Soc. Am. Proc. 34, 608.Google Scholar
  49. United Nations: 1988, ‘Use and Disposal of Waste from Phosphoric Acid and Titanium Dioxide Production’, U. N. Econ. Comm. Europe, New York, NY.Google Scholar
  50. Van Der Sluis, S., Witkamp, G. J., and Van Rosmalen, G. M.: 1986, J. Cryst. Growth. 79, 620.Google Scholar
  51. Varshal, G. M., Senyavin, M. M., and Yartseva, R. D.: 1975, ‘Forms of Calcium and REE in River Waters’, In A.I. Turgarinov (ed.), Recent Contributions to Geochemistry and Analytical Chemistry, Wiley, New York, NY, pp. 597–603.Google Scholar
  52. Vick, S. G. 1977. ‘Rehabilitation of a Gypsum Tailings Embankment’, in Solid Waste Materials, Proc. Conf. Geotechnical Practice for Disposal of Solid Waste Materials, Am. Soc. Civ. Eng., Ann Arbor, MI., pp. 697–714.Google Scholar
  53. Weaver, R. M., Jackson, M. L., and Syers, J. K.: 1971, Soil Sci. Soc. Am. Proc. 35, 823.Google Scholar
  54. Zachara, J. M., and Streile, G. P.: 1990, ‘Use of Batch and Column Methodologies to Assess Utility Waste Leaching and Subsurface Chemical Attenuation’, Battelle Pacific Northwest Lab., Elec. Power Res. Ins., Palo Alto, CA., EA-2485-8.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • S. M. Luther
    • 1
  • M. J. Dudas
    • 1
  • P. M. Rutherford
    • 1
  1. 1.Department of Soil ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations