Fresenius' Zeitschrift für analytische Chemie

, Volume 323, Issue 5, pp 421–449 | Cite as

Analytical science for the development of microelectronic devices

  • M. Grasserbauer
  • G. Stingeder
  • H. Pötzl
  • E. Guerrero


The new technical revolution, the development and introduction of microelectronics poses a great challenge for Analytical Chemistry: the material and process related analytical problems largely refer to extremely small concentrations and spatial dimensions. A successful treatment of such problems is only possible through the use of the most modern, mainly physical techniques, for which reason it seems appropriate to speak of “Analytical Science”.

This paper tries to demonstrate the potential of Analytical Science for the development of sophisticated microelectronic devices, taking as an example the most highly integrated circuit, the Direct Random Access Memory (DRAM). Referring to the various steps of production of such a device in MOS. technology the most important analytical problems and their treatment with analytical methods are discussed: purity and chemical surface structure of silicon wafers, behaviour of dopant elements during the basic operations of MOS technology (oxidation, implantation, annealing), chemical and physical features of metallization layers, and functional and chemical investigation of devices. Special emphasis is placed on the behaviour of the dopant elements which are decisive for the electrical properties of a device. It is shown that mainly physical analytical techniques like SIMS, NAA, RBS, TEM provide valuable new and quantitative information about the chemical and physical processes occurring in the semiconductor material during production of a device. This information enables substantial progress in process modelling, which is an important basis for further development of devices towards higher integration and complexity.


Silicon Wafer Analytical Problem Chemical Investigation Metallization Layer High Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols used


diameter of analyzed volume


depth of analyzed volume

(rel) DL

(relative) detection limit


excitation energy


(primary) beam intensity

Analytische Wissenschaft für die Entwicklung mikroelektronischer Bauelemente


Die neue technologische Revolution, nämlich Entwicklung und Einführung der Mikroelektronik, stellt für die Analytische Chemie eine der größten Herausforderungen dar: Die material- und prozeßbezogenen Fragestellungen beziehen sich nämlich in hohem Maße auf extrem kleine Konzentrationen und räumliche Dimensionen. Eine erfolgreiche Behandlung derartiger Fragestellungen ist nur durch Einsätz modernster, überwiegend auf der Physik basierender Hochleistungsanalytik („Analytische Wissenschaft“) möglich.

In der vorliegenden Arbeit wird versucht, die Rolle dieser Analytischen Wissenschaft für die Entwicklung mikroelektronischer Bauelemente am Beispiel des höchstintegrierten Direct Random Access Memory (DRAM) darzustellen. Ausgehend von den verschiedenen Stufen der Herstellung eines solchen Bauelementes in MOS-Technologie werden die wichtigsten analytischen Fragestellungen und deren Behandlung mit analytischen Methoden diskutiert: Reinheit und chemische Oberflächenstruktur der Siliciumwafer, Verteilung und Reaktionen der Dotierungselemente während der Grundoperationen des MOS-Prozesses (Oxidation, Implantation, Ausheilung), chemische und physikalische Eigenschaften der Metallisierungsstrukturen und funktionelle sowie chemische Untersuchungen der Bauelemente. Besonders eingegangen wird auf die Dotierungselemente, welche die elektrischen Eigenschaften eines Bauelementes bestimmen. Es wird gezeigt, daß in erster Linie physikalische Methoden wie SIMS, NAA, RBS, TEM wichtige neue und quantitative Informationen über die bei der Herstellung eines Bauelementes im Halbleiter ablaufenden chemischen und physikalischen Prozesse liefern. Diese Informationen ermöglichen wesentliche Verbesserungen in der Modellierung dieser Prozesse. Dies ist wiederum eine wesentliche Grundlage für die Weiterentwicklung mikroelektronischer Bauelemente in Richtung höherer Integration und Komple-xität.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Electronics Jan. 12, 1984Google Scholar
  2. 2.
    Bardeen J, Brattain W (1948) Phys Rev 74:230Google Scholar
  3. 3.
    Shockley W (1949) Bell Syst Technol J 28:435Google Scholar
  4. 4.
    Welker H (1979) Ann Rev Mat Sci 9:1Google Scholar
  5. 5.
    Jacobi W (1952) German Patent 833366Google Scholar
  6. 6.
    Noyce RN (1959) US Patents 2981877 and Kilby JS (1959) 3138743Google Scholar
  7. 7.
    Deal BE, Crossley PA (1981) Ann Rev Mat Sci 11:321Google Scholar
  8. 8.
    Voltmer FW (1981) Manufacturing process technology for MOS VLSI. In: VLSI electronics: Microstructure science, vol 1. Academic Press, New York, p 1Google Scholar
  9. 9.
    Thomas DG (1973) Semiconductor integrated circuit technology. In: Hannay NB, Colombo V (eds) Electronic materials. Plenum Press, New YorkGoogle Scholar
  10. 10.
    Ruoff AL, Chan K-S (1982) Material science, chemistry and physics at small dimensions, VLSI electronics: Microstructure science, vol 5. Academic Press, New York, p 329Google Scholar
  11. 11.
    Williams RH (1983) Surf Sci 132:122Google Scholar
  12. 12.
    Brodie I, Muray JJ (1982) The physics of microfabrication. Plenum Press, New YorkGoogle Scholar
  13. 13.
    Leanny HJ, Pike GE, Seager CH (eds) (1982) Grain boundaries in semiconductors. North Holland, New YorkGoogle Scholar
  14. 14.
    Brinkmann WF (1981) Microfabrication and basic research. In: VLSI electronics, Microstructure science, vol 2. Academic Press, New York, p 149Google Scholar
  15. 15.
    Howe R, Vanselow R (eds) (1984) Chemistry and physics of solid surfaces V. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Plummer JD (1984) Computer aided design of integrated circuit fabrication processes for VLSI devices, Rep. No. TR DXG 501-84, Stanford University, JulyGoogle Scholar
  17. 17.
    Antoniadis DA, Hansen SE, Dutton RW (1978) Integrated circuits laboratory, Stanford Electronics Laboratories, Rep. No. 5019-2Google Scholar
  18. 18.
    Tielert R (1983) Numerical simulation of impurity redistribution near mask edges. In: Antognetti (eds) Process and device simulation for MOS-VLSI circuits. NATO ASI Series E, vol 62. Martinus Niijhof Publ, p 343Google Scholar
  19. 19.
    Chin D, Kump MR, Lee HG, Dutton RW (1982) IEEE Trans Electron Dev ED 29:336Google Scholar
  20. 20.
    Ryssel H, Haberger K, Hoffmann K, Prinke G, Dümcke R, Sachs A (1980) IEEE Trans Electron Dev ED 27:1484Google Scholar
  21. 21.
    Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, WienGoogle Scholar
  22. 22.
    Ruge I (1984) Halbleitertechnologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Weiß H, Horninger K (1982) Integrierte MOS Schaltungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. 24.
    Larrabee GB (1981) Materials characterization for VLSI, VLSI electronics: Microstructure science, vol 2. Academic Press, New York, p 37Google Scholar
  25. 25.
    Werner HW (1979) Mikrochim Acta, Suppl 8:25Google Scholar
  26. 26.
    Werner HW (1983) Fresenius Z Anal Chem 314:274Google Scholar
  27. 27.
    Werner HW, Garten RPH (1984) Rep Progr Phys 47:221Google Scholar
  28. 28.
    Honig RE (1976) Thin Solid Films 31:89Google Scholar
  29. 29.
    Grasserbauer M, Zolotov YuA, Morrison GH, Stingeder G, Karpow YuA, Gimmelfarb FA (1985) Pure Appl Chem 57:1133, 1153Google Scholar
  30. 30.
    Ryssel H, Ruge I (1978) Ionen-Implantation. Teuber, StuttgartGoogle Scholar
  31. 31.
    Zinner E (1983) Electrochem Soc 130:199Google Scholar
  32. 32.
    Stingeder G, Grasserbauer M, Guerrero E, Pötzl H, Tielert R (1983) Fresenius Z Anal Chem 314:304Google Scholar
  33. 33.
    Evans CA, Blattner RJ (1978) Ann Rev Mat Sci 8:181Google Scholar
  34. 34.
    Reuter W, Baglin JEE (1981) J Vacuum Sci Technol 18:282Google Scholar
  35. 35.
    Benninghoven A, et al. (1978, 1980, 1982, 1984) Secondary ion mass spectrometry, I–IV. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. 36.
    Chu WK, Mayer JM, Nicolet MA (1978) Back scattering spectrometry. Academic Press, New YorkGoogle Scholar
  37. 37.
    Feldmann LC, Poate JM (1982) Ann Rev Mat Sci 12:149Google Scholar
  38. 38.
    Magee ChW (1979) J Electrochem Soc 126:660Google Scholar
  39. 39.
    Williams R, Evans ChA (1977) Appl Phys Lett 30:559Google Scholar
  40. 40.
    Werner HW (1976) Acta Electron 19:1, 53Google Scholar
  41. 41.
    Morrison GH (1982) In: SIMS III, p 244 (ref. [35])Google Scholar
  42. 42.
    McHugh JA (1975) Empirical quantitative procedures in SIMS. In: Heinrich KFJ, Newbury DE (eds) Secondary ion mass spectrometry. NBS SP427, p 129Google Scholar
  43. 43.
    Stingeder G (1983) Thesis Technical University, ViennaGoogle Scholar
  44. 44.
    Narayan J, Holland WO (1984) J Electrochem Soc 131:2651Google Scholar
  45. 45.
    Kolbesen BO, Strunk HP (1985) Analysis, electrical effects and prevention of process-induced defects in silicon integrated circuits, VLSI electronics, Microstructure science, vol 8. Academic Press, New York (in press)Google Scholar
  46. 46.
    Rath HJ, Stallhofer P, Huber D, Eichinger P, Ruge I (1984) Assessment of metallic trace contaminants on silicon wafers. Mat Res Soc, BostonGoogle Scholar
  47. 47.
    Niese S (1975) J Radioanal Chem 28:171Google Scholar
  48. 48.
    Stallhofer P, Huber D (1983) Solid State Technol, August, p 233Google Scholar
  49. 49.
    Miller GL, Lang DV, Kimerling LC (1977) Ann Rev Mat Sci 377Google Scholar
  50. 50.
    Eichinger P (1984) Annual Report Fraunhofer Institute for Solid State Technology, MunichGoogle Scholar
  51. 51.
    Grasserbauer M, Stingeder G, Pimminger M (1983) Fresenius Z Anal Chem 315:575Google Scholar
  52. 52.
    Ryssel H (1984) Lecture Technical University Vienna, June 14Google Scholar
  53. 53.
    Stingeder G, Grundner M, Grasserbauer M (1986) Investigation of surface contaminants on silicon wafers with SIMS. Surf Interface Anal, in pressGoogle Scholar
  54. 54.
    Jones GR (1981) Inst Phys Conf Ser 60:265Google Scholar
  55. 55.
    Grienauer HS, Kolbesen BO, Mayer KR (1975) Inst Phys Conf Ser 23:531Google Scholar
  56. 56.
    Hu SM (1977) J Electrochem Soc 124:578Google Scholar
  57. 57.
    Grunthaner FJ, Masserjian J (1977) IEEE Trans Nucl Sci 24:2108Google Scholar
  58. 58.
    Schaefer JA, Stucki F, Frankel DJ, Göpel W, Lapeyre GJ (1984) J Vacuum Sci Technol B2:359Google Scholar
  59. 59.
    Ibach H, Bruckmann HD, Wagner H (1982) Appl Phys A29:113Google Scholar
  60. 60.
    Hopfe V, Wagner D (1984) IR-Fourier Modulationsspektroskopie zur komplexen Grenzflächenanalytik, 4. Tagung Festkörperanalytik, Karl-Marx-Stadt, DDRGoogle Scholar
  61. 61.
    Grunthaner FJ, Grunthaner PJ, Vasquez RP, Lewis BF, Maserjian J, Madhukar A (1979) J Vacuum Sci Technol 16:1143Google Scholar
  62. 62.
    Margaritondo G, Franciosi A (1984) Ann Rev Mat Sci 14:67Google Scholar
  63. 63.
    Binnig G, Rohrer H (1983) Surf Sci 126:236Google Scholar
  64. 64.
    Henghuber G, Oppolzer H, Schild S (1980) Siemens Res Dev Rep 9:363Google Scholar
  65. 65.
    Murrmann H (1976) Siemens Res Dev Rep 5:353Google Scholar
  66. 66.
    Zaininger KH, Heimann FP (1970) Solid State Technol 13:5, 6Google Scholar
  67. 67.
    Hurrle A, Sixt G (1975) Appl Phys 8:293Google Scholar
  68. 68.
    Mikkelsen JR (1981) Appl Phys Lett 39:601Google Scholar
  69. 69.
    Johnson NM, Biegelsen DK, Moyer MD, Deline VR, Evans CA (1981) Appl Phys Lett 38:995Google Scholar
  70. 70.
    Bösenberg WA, Magee CW, Botnick EM (1980) J Electrochem Soc 131:2397Google Scholar
  71. 71.
    Abrahams MS, Buiocchi CJ (1974) J Appl Phys 45:3315Google Scholar
  72. 72.
    Pongratz P, Oppolzer H, Schmitt-Landsiedel D, Hofmann K, Dorda G, Skalicky P (1983) Inst Phys Conf Ser 67:491Google Scholar
  73. 73.
    Bravmann JC (1984) TEM Studies of Silicon VLSI Interfaces, in ref. [16], pp 6–1Google Scholar
  74. 74.
    Guerrero E (1984) Thesis Technical University ViennaGoogle Scholar
  75. 75.
    Guerrero E, Pötzl HW, Stingeder G, Grasserbauer M (1986) As-implantation through SiO2: O-recoil and As gettering (in preparation)Google Scholar
  76. 76.
    Tan TY, Gösele U (1985) J Appl Phys (in press)Google Scholar
  77. 77.
    Guerrero E, Pötzl HW, Stingeder G, Grasserbauer M, Piplits K, Chu WK (1986) J Electrochem Soc (in press)Google Scholar
  78. 78.
    Pötzl HW, Guerrero E (1983) Arch Elektr Übertragungstechn 37:211Google Scholar
  79. 79.
    Guerrero E, Pötzl HW, Tielert R, Grasserbauer M, Stingeder G (1982) J Electrochem Soc 129:1826Google Scholar
  80. 80.
    Guerrero E (1982) Generalized model for the clustering of As dopants in Si, US-German Workshop on Fundamental Problems in VLSI Processing, July 7–9, MunichGoogle Scholar
  81. 81.
    Song HS, Niimi T, Kobayashi K, Kudok K (1982) J Electrochem Soc Solid State Sci Technol 129:841Google Scholar
  82. 82.
    Pennycook SJ, Narayan J, Holland OW (1983) J Appl Phys 54:6875Google Scholar
  83. 83.
    Juengling W, Guerrero E, Pötzl HW, Gösele U, Mader L, Grasserbauer M, Stingeder G Submitted to J Electrochem SocGoogle Scholar
  84. 84.
    Blanchard B, Hilleret N, Quoirin JB (1972) Radioanal Chem 12:85Google Scholar
  85. 85.
    Schwarz SA, Barton RW, Ho CP, Helms CR (1981) J Vacuum Sci Technol 128:1101Google Scholar
  86. 86.
    Charitat G, Martinez A (1984) J Appl Phys 55:2869Google Scholar
  87. 87.
    Tielert R, Private CommunicationGoogle Scholar
  88. 88.
    Mader S (1970) Determination of structures in films. In: Maissel LI, Glang R (eds) Handbook of thin film technology. McGraw Hill, New York, pp 9.1–9.34Google Scholar
  89. 89.
    Pliskin WA, Zanin SJ (1970) Film thickness and composition. In: Maissel LI, Glang R (eds) Handbook of thin film technology. McGraw Hill, New York, pp 11.1–11.54Google Scholar
  90. 90.
    Von Criegern, Hillmer T, Huber V, Oppolzer H, Weitzel I (1984) Fresenius Z Anal Chem 319:861Google Scholar
  91. 91.
    Oppolzer H, Neppl F, Hieber K, Huber V (1984) J Vacuum Sci Technol B2:630Google Scholar
  92. 92.
    Oppolzer H, Eckers W, Schober H (1985) J Phys (in press)Google Scholar
  93. 93.
    Rehme H (1982) Phys Bl 38:253Google Scholar
  94. 94.
    Feuerbaum HP (1983) Scanning 5:14Google Scholar
  95. 95.
    Wolfgang E (1983) Inst Phys Conf Ser 67:407Google Scholar
  96. 96.
    Fazekas P, Fox F, Papp A, Widulla F, Wolfgang E (1983) Scanning Electron Microsc IV:1595Google Scholar
  97. 97.
    Takashima S (1982) Jeol News 20E:2, 10Google Scholar
  98. 98.
    Menzel E, Kubalek E (1983) Scanning 5:103Google Scholar
  99. 99.
    Schink H, Rehme H (1983) Beitr Elektronenmikroskop Direktabb Oberfl 16:287Google Scholar
  100. 100.
    Matson RJ (1983) Jeol News 21E:2, 10Google Scholar
  101. 101.
    Rüdenauer FG, Pollinger P, Studnicka H, Gnaser H, Steiger W, Higatsberger MJ (1982) SIMS III (ref. [35]), p 43Google Scholar
  102. 102.
    Liebl H (1984) SIMS IV (ref. [35]). p 114Google Scholar
  103. 103.
    Goddard P, MacPherson MT, Hutton RC (1985) Microchem Acta Suppl 11 (in press)Google Scholar
  104. 104.
    Von Criegern R, Hillmer T, Weitzel I (1983) Fresenius Z Anal Chem 314:293Google Scholar
  105. 105.
    Perkin Elmer, PHI, Appl. Note 7902, 3/30/79Google Scholar
  106. 106.
    Ichikowa M, Hayakawa K (1982) Jpn J Appl Phys 21:145, 154Google Scholar
  107. 107.
    Heinen HJ, Holm R (1984 III) Scanning Electron Microsc 3:1136Google Scholar
  108. 108.
    Hiratsuka Y, Tochigi K, Hirano Y (1984 III) Mikrochim Acta 359Google Scholar
  109. 109.
    Ramsey JN (1984) Physique 45: Suppl 2, C2–881Google Scholar
  110. 110.
    Grasserbauer M, Heinrich KFJ, Morrison GH (1983) Pure Appl Chem 55:2023Google Scholar
  111. 111.
    Morrison GH, Cheng KL, Grasserbauer M (1979) Pure Appl Chem 51:2243Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Grasserbauer
    • 1
  • G. Stingeder
    • 1
  • H. Pötzl
    • 2
    • 3
  • E. Guerrero
    • 2
    • 3
  1. 1.Institute for Analytical Chemistry, Department for Physical AnalysisTechnical UniversityWienAustria
  2. 2.Institute for General Electrical Engineering and ElectronicsTechnical University
  3. 3.Ludwig Boltzmann-Institute for Solid State PhysicsWienAustria

Personalised recommendations