Archives of Microbiology

, Volume 147, Issue 3, pp 276–284 | Cite as

Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs

  • S. J. Giovannoni
  • E. Schabtach
  • R. W. Castenholz
Original Papers

Abstract

An unusual filamentous, budding bacterium was isolated from several North American hot springs and named Isosphaera pallida. Filaments are composed of spherical cells 2.5–3.0 μm in diameter, with cell growth and division occurring by formation of intercalary buds. These obligately aerobic, heterotrophic isolates closely resemble Isocystis pallida Woronichin, which has been previously described as a cyanobacterium, and later as a yeast, based on collected specimens.

Isolates were salmon-colored due to the presence of carotenoids and contained gas vesicles. Growth occurred at temperatures up to 55° C in defined media using 0.025% glucose or lactate as carbon sources. Glucose concentrations of 0.05% or higher inhibited growth of the culture.

Ultrathin sections observed by TEM revealed an unusual tri-laminar wall structure. Pit-like ultrastructural features were found in the cell wall. Growth of cultures was not inhibited by penicillin G, and the Gram reaction gave variable results.

Cells formed motile, macroscopic aggregates (“comets”) when harvested from liquid cultures and plated on media containing Gelrite (Kelco Co.) as a solidifying agent. Aggregation and motility were observed in both the light and the dark. However, comets were strongly phototactic. Negative stains revealed numerous pili, but not flagella.

We propose that this highly unusual prokaryote be placed in a new genus.

Key words

Isosphaera pallida Thermophile Hot spring Phototaxis Gliding motility Gas vesicles Budding Cell wall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostidis K, Rathsack-Kuzenbach R (1967) Isocystis pallida-Blaualgae oder hefeartiger Pilz. Schweiz Zeit Hydrol 29:191–198Google Scholar
  2. Barbour AG, Amano KI, Hackstadt T, Perry L, Caldwell HD (1982) Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151:420–428Google Scholar
  3. Bornet E, Flahault C (1888) (reprinted 1959). Revision des Nostocacées hétérocystées. Ann Sci Nat Bot 7:178–262Google Scholar
  4. Bradfield AR (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  5. Castenholz RW (1982) Motility and taxes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell. Oxford and Univ of Calif, Berkeley, pp 413–439Google Scholar
  6. Elenkin AA (1949) Sineselenije wodorosei SSSR (Monographia algarum Cyanophycearum aquidulcium et terrestrium in finibus URSS inventarum pars specialis. Akad Nauk, Moskwa Leningrad, Fasc 2:985–1908Google Scholar
  7. Garrett AJ, Harrison MJ, Manire GP (1974) A search for the bacterial mucopeptide component muramic acid in Chlamydia. J Gen Microbiol 80:315–318Google Scholar
  8. Gebers R, Wehmeyer U, Roggentin T, Schlesner H, Kolbel-Boelke J, Hirsch P (1985) Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria. Int J Sys Bacteriol 35:260–269Google Scholar
  9. Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, vol XIV. Akademische Verlagsbuchhandlung, LeipzigGoogle Scholar
  10. Geitler L (1955) Torutopsidosira n. gen., ein neuer hefeartiger Pilz, und andere knospende Mikroorganismen. Archiv Mikrobiol 22:324–334Google Scholar
  11. Gettler L (1963) Die angebliche Cyanophycee Isocystis pallida ist ein hefeartiger Pilz. Arch Mikrobiol 46:238–242Google Scholar
  12. König E, Schlesner H, Hirsch P (1984) Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205Google Scholar
  13. Macnab R, Koshland DE (1974) Bacterial motility and chemotaxis: light induced tumbling response and visualization of individual flagella. J Mol Biol 84:399–406Google Scholar
  14. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–219Google Scholar
  15. Nelson D, Castenholz R (1982) Light responses in Beggiatoa. Arch Microbiol 131:146–155Google Scholar
  16. Pfennig N, Trüper HG (1981) Isolation of members of the Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation, and identification of bacteria. Springer, Berlin Heidelberg New York, pp 279–289Google Scholar
  17. Schmidt JM, Starr MP (1981) The Blastocaulis-Planctomyces group of buddding and appendaged bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on the habitats, isolation, and identification of bacteria. Springer, Berlin Heidelberg New York, pp 496–504Google Scholar
  18. Schmidt JM, Starr MP (1982) Ultrastructura features of budding cells in a prokaryote belonging to morphotype IV of the Blastocaulis-Planctomyces group. Curr Microbiol 7:7–11Google Scholar
  19. Stackebrandt E, Ludwig W, Schubert W, Klink F, Schlesner H, Roggentin T, Hirsch P (1984) Molecular genetic evidence of early evolutionary origin of budding peptidoglycan-less eubacteria. Nature 307:735–737Google Scholar
  20. Starmach K (1966) Cyanophyta-Glaucophyta (Sinice-Glaukofity). Flora slodkowodna Polski, vol 2. Polska Akad Nauk, Warsaw (in Polish), pp 1–807Google Scholar
  21. Taylor BL, Koshland DE (1975) Intrinsic and extrinsic light responses in Salmonella typhimurium and Escherichia coli. J Bacteriol 123:557–569Google Scholar
  22. Woronichin NN (1927) Materiali k agologitscheskoj flore i rastitjelnosti mineralnich istotschnikov gruppi Kaukaskich mineralnich wod. Trav Inst Balneol aux Eaux Miner du Caucase 5:90–121Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. J. Giovannoni
    • 1
  • E. Schabtach
    • 2
  • R. W. Castenholz
    • 2
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations