Diabetologia

, Volume 9, Issue 6, pp 477–482

Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets

  • U. Panten
  • J. Christians
  • E. v. Kriegstein
  • W. Poser
  • A. Hasselblatt
Originals

Summary

In perifused pancreatic islets, the fluorescence of reduced pyridine nucleotides (NAD(P)H) was measured continuously. Elevation of glucose concentration in the medium from 0 – 5 mM to 20 mM led to an increase in NAD(P)H-fluorescence beginning 10–20 sec after change of medium. Perifusion with calcium-free media had no influence on this effect. It was, however, partially or completely blocked by 2-deoxy D-glucose, D-glucosamine, or D-mannoheptulose. D-mannose, but not D-fructose and L-lactate, enhanced NAD(P)H-fluorescence from pancreatic islets. Pyruvate caused but a small fluorescence increase. From these observations it is concluded that D-glucose leads to the increase of NAD(P)H-fluorescence by mediation of the phosphoglyceraldehyde dehydrogenase reaction.

Key words

Pancreatic islets rats obese-hyperglycemic mice perifusion fluorescence reduced pyridine nucleotides D-glucose D-mannoheptulose L-lactate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Curry, D.L., Bennett, L.L., Grodsky, G.M.: Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83, 572–584 (1968)Google Scholar
  2. 2.
    Renold, A.E.: The beta cell and its responses: Summarizing remarks and some contributions from Geneva. Diabetes 21 (Suppl. 2), 619–631 (1972)Google Scholar
  3. 3.
    Matschinsky, F.M., Landgraf, R., Ellerman, J., Kotler-Brajtburg, J.: Glucoreceptor mechanisms in islets of Langerhans. Diabetes 21, (Suppl. 2), 555–569 (1972)Google Scholar
  4. 4.
    Burr, J.M., Balant, L., Stauffacher, W., Renold, A.E.: Perifusion of rat pancreatic tissue in vitro: Substrate modification of theophylline-induced biphasic insulin release. J. clin. Invest. 49, 2097–2105 (1970)Google Scholar
  5. 5.
    Chance, B., Williamson, J.R., Jamieson, D., Schöner, B.: Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochem. Z. 341, 357–377 (1965)Google Scholar
  6. 6.
    Scholz, R., Schwarz, F.: Barbiturate und energieliefernder Stoffwechsel in der hämoglobinfrei durchströmten Leber der Ratte. Z. clin. Chem. 4, 179–189 (1966)Google Scholar
  7. 7.
    Van Rossum, G.D.V.: Observations on the fluorescence emitted by slices of rat liver and avian salt gland. Biochim. biophys. Acta (Amst.) 88, 507–516 (1964)Google Scholar
  8. 8.
    Brauser, B., Bücher, Th., Dolivo, M.: Redox transitions of cytochromes and pyridine nucleotides upon stimulation of an isolated rat ganglion. FEES Letters 8, 297–300 (1970)Google Scholar
  9. 9.
    Panten, U., Poser, W., Hasselblatt, A.: Fluorescence of reduced pyridine nucleotides of superfused pancreatic islets. Proceedings of the 6th meeting of the European Assiociation for the Study of Diabetes. Diabetologia 6, 643 (1970)Google Scholar
  10. 10.
    Hellerström, C.: A method for the microdissection of intact pancreatic islets of mammals. Acta endocr. 45, 122–132 (1964)Google Scholar
  11. 11.
    Panten, U., dal Ri, H., Poser, W., Hasselblatt, A.: Eine Methode der Gewebsumströmung für Fluoreszenzmessungen. Pflügers Arch. ges. Physiol. 323, 86–90 (1971)Google Scholar
  12. 12.
    Zaharko, D.S., Beck, L.V.: Studies of a simplified plasma insulin immunoassay using cellulose powder. Diabetes 17, 444–457 (1968)Google Scholar
  13. 13.
    Scholz, R., Thurman, R. G., Williamson, J.R., Chance, B., Bücher, Th.: Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J. biol. Chem. 244, 2317–2324 (1969)Google Scholar
  14. 14.
    Grodsky, G.M., Batts A.A., Bennett, L.L., Vcella, C., McWilliams, N.B., Smith, D.F.: Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Amer, J. Physiol. 205, 638–644 (1963)Google Scholar
  15. 15.
    Coore, H.G., Randle, P.J.: Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem. J. 93, 66–78 (1964)Google Scholar
  16. 16.
    Hellman, B., Idahl, L.-A., Lernmark, A., Sehlin, J., Simon, E., Täljedal, I.-B.: The pancreatic β-oell recognition of insulin secretagogues. I. Transport of mannoheptulose and the dynamics of insulin release. Molec. Pharmacol. 8, 1–7 (1972)Google Scholar
  17. 17.
    Chance, B., Cohen, P., Jöbsis, F., Schoener, B.: Intracellular oxidation-reduction states in vivo. Science 137, 499–508 (1962)Google Scholar
  18. 18.
    Ogata, E., Nishiki, K., Kobayashi, S., Tateisi, K., Suzuki, H.: In vivo induced oxidation by thyrotropin of reduced pyridine nucleotides in rabbit and rat thyroid. Endocrinology 87, 552–559 (1970)Google Scholar
  19. 19.
    Kohen, E.: Pyridine nucleotide compartmentalization in glass-grown ascites cells. Exp. Cell Res. 35, 303–316 (1964)Google Scholar
  20. 20.
    Hellman, B., Sehlin, J., Täljedal, I.-B.: Transport of α-aminoisobutyric acid in mammalian pancreatic β-cells. Diabetologia 7, 256–265 (1971)Google Scholar
  21. 21.
    Hellman, B., Sehlin, J., Täljedal, I.-B.: Calcium uptake by pancreatic β-cells as measured with the aid of 45Ca and mannitol-3H. Amer. J. Physiol. 221, 1795–1801 (1971)Google Scholar
  22. 22.
    Hellerström, C., Westman, S., Marsden, N., Turner, D.: Oxygen consumption of the β-cells in relation to insulin release. In: The Structure and Metabolism of the Pancreatic Islets. S. Falkmer, B. Hellman, I.-B. Täljedal (eds.) p. 315. Oxford: Perganaon Press 1970Google Scholar
  23. 23.
    Bücher, Th., Brauser, B., Conze, A., Klein, F., Langguth, O., Sies, H.: State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate/ pyruvate in hemoglobin-free perfused rat liver. Europ. J. Biochem. 27, 301–317 (1972)Google Scholar
  24. 24.
    Jöbsis, F.F., O'Connor, M., Vitale, A., Vreman, H.: Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J. Neurophysiol. 34, 735–749 (1971)Google Scholar
  25. 25.
    Hellerström, C., Hellman, B., Petersson, B., Alm, G-.: The two types of pancreatic A-cells and their relation to the glucagon secretion. In: The Structure and Metabolism of the Pancratic Islets S.E. Brolin, B. Hellman, H. Knutson (eds.) p. 117. Oxford: Pergamon Press 1964Google Scholar
  26. 26.
    Hellman, B., Sehlin, J., Täljedal, I.-B.: Evidence for mediated transport of glucose in mammalian pancreatic β-cells. Biochim. biophys. Acta (Amst.) 241, 147–154 (1971)Google Scholar
  27. 27.
    Ashcroft, S. J.H., Weerasinghe, L.C.C., Bassett, J.M., Randle, P.J.: The pentose cycle and insulin release in mouse pancreatic islets. Biochem. J. 126, 525–532 (1972)Google Scholar
  28. 28.
    Hellman, B., Täljedal, I.-B.: Quantitative studies on isolated pancreatic islets of mammals. Activity and heterogeneity of lactate dehydrogenase in obesehyperglycemic mice. Endocrinology 81, 125–131 (1967)Google Scholar
  29. 29.
    Ashcroft, S.J.H., Hedeskov, C.J., Randle, P.J.: Glucose metabolism in mouse pancreatic islets. Biochem. J. 118, 143–154 (1970)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • U. Panten
    • 1
  • J. Christians
    • 1
  • E. v. Kriegstein
    • 1
  • W. Poser
    • 1
  • A. Hasselblatt
    • 1
  1. 1.Pharmakologisches Institut der Universität GöttingenGöttingenGermany (FRG)

Personalised recommendations