Cerebrospinal fluid neurophysins in affective illness and in schizophrenia

  • Paul Linkowski
  • Vincent Geenen
  • Myriam Kerkhofs
  • Julien Mendlewicz
  • Jean Jacques Legros


We studied the concentration of neurophysin I ( hNPI) and II (hNPII), the hypothalamo-pituitary carriers of vasopressin and oxytocin, in CSF of depressed and schizophrenic patients and age matched controls. Mean hNPI values were lower and mean hNPII values greater in schizophrenics than in controls. Lower hNPI values were observed in unipolar patients than in controls. In bipolar patients however, higher hNPI values were present. Significantly higher hNPII values were observed in bipolar patients than in controls; no difference was present between unipolars and controls. A positive correlation was observed with age in controls and bipolars for hNPII. These data emphasize the interest of studying the neurohypophysal function in affective illness and in schizophrenia.

Key words

Neurophysins Vasopressin Oxytocin Schizophrenia Depressive disorders CSF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams R, Redfield J, Taylor MA (1981) Cognitive dysfunction in schizophrenia, affective disorder and organic brain disease. Br J Psychiatr 139:190–194Google Scholar
  2. Amico Y, Tenicela R, Johnston A, Robinson A (1983) A time dependent peak of oxytocin exists in cerebrospinal fluid but not in plsama of humans. J Clin Endocrinol Metab 57:947–951Google Scholar
  3. Berettini WH, Numberger J, Worthington E, Simmons-Ailing S, Gershon E (1982) Platelet vasopressin receptors in bipolar affective illness. Psychiatry Res 7:83–86Google Scholar
  4. Blake DR, Dodd MJ, Evans JG (1978) Vasopressin in amnesia Lancet I:608Google Scholar
  5. Bohus B, Kovacs GL, De Wied D (1978) Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res 157:414–418Google Scholar
  6. Bondareff W, Mountjoy CQ, Roth M (1981) Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet I:783Google Scholar
  7. Calne ED, Ebert MH, Weingartner H (1977) Cognitive function in primary affective disorder. Neurology 27:1987–1092Google Scholar
  8. Clarke G, Lincoln DW, Merrick L (1979) Dopaminergic control of oxytocin release in lactating rats. J Endocrinol 83:409–420Google Scholar
  9. Courtney N, Raskind M (1983) Vasopressin affects adenylate cyclase activity in rat brain: a possible neuromodulator. Life Sci 19:591–596Google Scholar
  10. De Wied D (1976) Behavioural effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19:685–689Google Scholar
  11. Ettenberg A, van der Kooy D, Le Moal M, Koob GF, Bloom FE (1983) Can aversive properties of (peripherally-injected vasopressin account for its putative role in memory. Behav Brain Res 7:331–350Google Scholar
  12. Ferrier BM, Kennett DJ, Delvin MC (1980) Influences of oxytocin on human memory processes. Life Sci 27:2311–2314Google Scholar
  13. Gjerris A, Fahrenkrug J, Hammer M, Schaffalitzky Del Muckadell DB, Hojholm S, Tendsborg P, Rafaelsen OJ (1980) Peptides in the cerebrospinal fluid of manic melancholic and schizophrenic patients. In: Abstracts 12th CINP Congress, Pergamon Press, London, p 155Google Scholar
  14. Gold PW, Goodwin FK, Reus V (1978) Vasopressin in affective illness. Lancet I:1233–1235Google Scholar
  15. Gold PW, Post RM, Weingartner H, Goodwin FK (1981) Central peptide function in affective illness: Arginine vasopressin as a model system. Adv Biol Psychiatr 7:42–70Google Scholar
  16. Gold PW, Robertson GL, Ballenger J, Goodwin FK, Rubinow D, Kellner D, Post RM (1983) Neurohypophyseal function in affective illness. Psychopharmacol Bull 3:426–431Google Scholar
  17. Hostetter G, Jubb SL, Kozrowski GP (1980) An inability of subcutaneous vasopressin to affect passive avoidance behavior. Neuroendocrinology 30:174–177Google Scholar
  18. Jenkins JS, Mather HM, Conghlan AK, Jenkins DG (1979) Desmopressin in post traumatic amnesia. Lancet 11:1245–1246Google Scholar
  19. Kovacks GL, Bohus B, Versteeg DHG (1979) The effect of vasopressin on memory processes: the role of noradrenergic neurotransmission. Biochem Pharmacol 28:1529–1537Google Scholar
  20. Legros JJ, Louis F (1973) Identification of a vasopressin-neurophysin and of an oxytocin-neurophysin in man. Neuroendocrinology 13:371–375Google Scholar
  21. Legros JJ, Gilot P, Seron X, Claessens J, Adam A, Moeglen JM, Audibert A, Berthier P (1978) Influence of vasopressin on learning and memory. Lancet I:42Google Scholar
  22. Legros JJ, Geenen V, Linkowski P, Mendlewicz J (1983) Increased neurophysin I and II cerebrospinal fluid concentration from bipolar versus unipolar depressed patients. Neuroendocrinol Lett 5:201–205Google Scholar
  23. Pullan PT, Clappison BH, Johnston CI (1979) Plasma vasopressin and human neurophysins in physiological and pathological states associated with changes in vasopressin secretion. J Clin Endocrinol Metab 48:580–587Google Scholar
  24. Raskind VA, Weitzmann RE, Orenstein H, Fisher DA, Courtney N (1978) Is antidiuretic hormone elevated in psychosis. A pilot study. Biol Psychiatr 13:385–387Google Scholar
  25. Reppert JM, Actman HG, Swaminathan F, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 216:1416–1417Google Scholar
  26. Robinson ICAF, Jones PM (1982) Clearance of neurohypophyseal peptides from cerebrospinal fluid. J Physiol 236:23PGoogle Scholar
  27. Sahgal A, Keith AB, Wright C, Edwardson JA (1982) Failure of vasopressin to enhance memory in passive avoidance task in rats. Neurosci Lett 28:87–92Google Scholar
  28. Snedecor G, Cochran WG (1967) Statistical methods. 6th edn. The Iowa State University Press, AmesGoogle Scholar
  29. Spitzer RL, Endicott J, Robins E (1978) Research diagnostic criteria: rationale and reliability. Arch Gen Psychiatr 35:273–279Google Scholar
  30. Stetson MA, Watson-Whitmyre B (1976) Nucleus suprachiasmaticus. The biological clock in the hamster Science 191:197–198Google Scholar
  31. Stromgren LS (1977) The influence of depression on memory. Acta Psychiatr Scand 56:109–115Google Scholar
  32. Weingartner A, Gold PW, Ballenger J, Smallberg S, Summers R, Post RM, Goodwin FK (1981) Effects of vasopressin on human memory functions. Science 204:601–603Google Scholar
  33. Whalley LT, Robinson ICAG, Fink G (1982) Oxytocin and neurophysin in post partum mania. Lancet II:387–388Google Scholar
  34. Winer BJ (1972) Statistical principles in experimental design. Mc Graw Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Paul Linkowski
    • 1
  • Vincent Geenen
    • 2
  • Myriam Kerkhofs
    • 1
  • Julien Mendlewicz
    • 1
  • Jean Jacques Legros
    • 2
  1. 1.Departement of Psychiatry, Erasme HospitalUniversity of BrusselsBrusselsBelgium
  2. 2.Neuroendocrinology Section, Radioimmunoassay Laboratory, Department of Clinical Pathology, CHV B23University of LiegeLiègeBelgium

Personalised recommendations