Advertisement

Molecular and General Genetics MGG

, Volume 158, Issue 1, pp 23–33 | Cite as

Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein

  • Patrick Bavoil
  • Hiroshi Nikaido
  • Kaspar von Meyenburg
Article

Summary

Four “pleiotropic transport” mutants of Escherichia coli B/r with decreased affinity for the uptake of most nutrients were found to lack a major outer membrane protein of 36,500 daltons (“porin”) previously shown to produce transmembrane diffusion channels in in vitro reconstitution experiments. Consequent decrease in outer membrane permeability was confirmed by measuring the transmembrane diffusion rate of 6-aminopenicillanic acid. Quantitative considerations on the porin-dependent permeability of the outer membrane show that (a) there may be very large differences in the actual rates of penetration, even among the “permeable” substances and (b) the numbers of porin molecules present in wild type cells is several orders of magnitude higher than that necessary for the uptake of rapidly diffusing substrates such as glocose from ordinary culture media. The absence of porin and the pleiotropic transport defect were always contransduced, and the mutation was mapped at 73.7 min between aroB and malT by P1 transduction. When “revertants” able to grow on low concentrations of lactose were selected, in addition to true revertants “suppressor” strains with increased amounts of non-porin membrane proteins were isolated.

Keywords

Escherichia Coli Permeability Lactose Outer Membrane Wild Type Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, G.F.-L., Nikaido, K.: Two dimensional gel electrophoresis of membrane proteins. Biochemistry 15, 616–623 (1976)Google Scholar
  2. Ames, G.F.-L., Spudich, E.N., Nikaido, H.: Protein composition of the outer membrane of Salmonella typhimurium: Effect of lipopolysaccharide mutations. J. Bact. 117, 406–416 (1974)Google Scholar
  3. Anderson, J.J., Oxender, D.L.: Escherichia coli transport mutants lacking binding protein and other components of the branched chain amino acid transport systems. J. Bact. 130, 384–392 (1977)Google Scholar
  4. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Genetics 76, 169–184 (1976)Google Scholar
  5. Beacham, I.R., Haas, D., Yagil, E.: Mutants of Escherichia coli “cryptic” for certain periplasmic enzymes: Evidence for an alteration of the outer membrane. J. Bact. 129, 1034–1044 (1977)Google Scholar
  6. Bertani, G.: Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bact. 62, 293–300 (1951)Google Scholar
  7. Boyer, H.: Conjugation in E. coli. J. Bact. 91, 1767–1772 (1966)Google Scholar
  8. Decad, G.M., Nikaido, H.: Outer membrane of Gram-negative bacteria. XII. Molecular sieving function of cell wall. J. Bact. 128, 325–336 (1976)Google Scholar
  9. Hancock, R.E.W., Hantke, K., Braun, V.: Iron transport in Escherichia coli K-12: Involvement of the colicin B receptor and of a citrate-inducible protein. J. Bact. 127, 1370–1375 (1976)Google Scholar
  10. Hantke, K.: Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. FEBS Lett. 70, 109–112 (1976)Google Scholar
  11. Hatfield, D., Hofnung, M., Schwartz, M.: Genetic analysis of the maltose A region in Escherichia coli. J. Bact. 98, 559–567 (1969)Google Scholar
  12. Henning, U., Haller, I.: Mutants of Escherichia coli K12 lacking all “major” proteins of the outer cell envelope membrane. FEBS Lett. 55, 161–164 (1975)Google Scholar
  13. Hindennach, I., Henning, U.: The major proteins of the Escherichia coli outer cell envelope membrane. Preparative isolation of all major proteins. Europ. J. Biochem. 59, 207–213 (1975)Google Scholar
  14. Hofnung, M.: Divergent operons and the genetic structure of the maltose B region of Escherichia coli K12. Genetics 76, 169–184 (1974)Google Scholar
  15. Ichihara, S., Mizushima, S.: Involvement of outer membrane proteins in enterochelin-mediated iron uptake in Escherichia coli. J. Biochem. (Tokoy) 81, 749–756 (1977)Google Scholar
  16. Leive, L.: The barrier function of the gram-negative envelope. Ann. N.Y. Acad. Sci. 238, 109–129 (1974)Google Scholar
  17. Lugtenberg, B., Meijers, J., Peters, R., Hoek, P. van der, Alphen, L. van: Electrophoretic resolution of the “major outer membrane protein” of Escherichia coli K12 into four bands. FEBS Lett. 58, 254–258 (1975)Google Scholar
  18. Lutkenhaus, J.F.: Role of a major outer membrane protein in Escherichia coli. J. Bact. 131, 631–637 (1977)Google Scholar
  19. Meyenburg, K. von: Transport-limited growth rates in a mutant of Escherichia coli. J. Bact. 107, 878–888 (1971)Google Scholar
  20. Miller, J.H.: Experiments in molecular genetics. Cold Springer Harbor, New York: Cold Springer Harbor Laboratory 1972Google Scholar
  21. Nagel de Zwaig R., Zwaig, N., Istúriz, T., Sanchez, R.S.: Mutations affecting gluconate metabolism in Escherichia coli. J. Bact. 114, 463–468 (1973)Google Scholar
  22. Nakae, T.: Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J. biol. Chem. 251, 2176–2178 (1976a)Google Scholar
  23. Nakae, T.: Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem. biophys. Res. Commun 71, 877–884 (1976b)Google Scholar
  24. Nikaido, H.: Biosynthesis and assembly of lipopolysaccharide and the outer membrane layer of Gram-negative cell wall. In: Bacterial membranes and walls (Leive, L. ed.), pp. 131–208. New York: Marcel Dekker 1973Google Scholar
  25. Nikaido, H.: Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim. biophys. Acta (Amst.) 433, 118–132 (1976)Google Scholar
  26. Nikaido, H., Song, S.A., Shaltiel, L., Nurminen, M.: Outer membrane of Salmonella. XIV. Reduced transmembrane diffusion rates in porin-deficient mutants. Biochem. biophys. Res. Commun. 76, 324–330 (1977)Google Scholar
  27. Nurminen, M., Louatmaa, K., Sarvas, M., Mäkelä, P.H., Nakae, T.: Bacteriophage-resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins. J. Bact. 127, 941–955 (1976)Google Scholar
  28. O'Farrell, P.H.: High resolution two dimensional electrophoresis of proteins. J. biol. Chem. 250, 4007–4021 (1975)Google Scholar
  29. Pugsley, A.P., Reeves, P.: The role of colicin receptors in the uptake of ferrienterochelin by Escherichia coli K-12. Biochem. biophys. Res. Commun. 74, 903–911 (1977)Google Scholar
  30. Rosenbusch, J.P.: Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodesyl sulfate binding. J. biol. Chem. 249, 8019–8029 (1974)Google Scholar
  31. Sarma, V., Reeves, P.: Genetic locus (omB) affecting a major outer membrane protein in Escherichia coli K-12. J. Bact. 132, 23–27 (1977)Google Scholar
  32. Schleif, R.: Control of production of ribosomal protein. J. molec. Biol. 27, 41–55 (1967)Google Scholar
  33. Schmitges, C.J., Henning, U.: The major proteins of Escherichia coli outer cell-envelope membrane. Heterogeneity of protein I. Europ. J. Biochem. 63, 47–52 (1976)Google Scholar
  34. Schnaitman, C.A.: Outer membrane proteins of Escherichia coli IV. Differences in outer membrane proteins due to strain and cultural differences. J. Bact. 118, 454–464 (1974)Google Scholar
  35. Sekizawa, J., Inouye, S., Halegoua, S., Inouye, M.: Precursors of major outer membrane proteins of Escherichia coli. Biochem. biophys. Res. Commun. 77, 1126–1133 (1977)Google Scholar
  36. Smit, J., Kamio, Y., Nikaido, H.: Outer membrane of Salmonella typhimurium: Chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bact. 124, 942–958 (1975)Google Scholar
  37. Uemura, J., Mizushima, S.: Isolation of outer membrane proteins of Escherichia coli and their characterization on polyacrylamide gel. Biochim. biophys. Acta (Amst.) 413, 163–176 (1975)Google Scholar
  38. Wayne, R., Frick, K., Neilands, J.B.: Siderophore protection against colicins M, B, V, and Ia in Escherichia coli. J. Bact. 126, 7–12 (1977)Google Scholar
  39. Yu, F., Mizushima, S.: Stimulation by lipopolysaccharide of the binding of outer membrane proteins O-8 and O-9 to peptidoglycan layer of Escherichia coli K-12. Biochem. biophys. Res. Commun. 74, 1397–1402 (1977)Google Scholar
  40. Zimmermann, W., Rosselet, A.: The function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrob. Ag. Chemother. 12, 368–372 (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Patrick Bavoil
    • 1
  • Hiroshi Nikaido
    • 1
  • Kaspar von Meyenburg
    • 2
  1. 1.Department of Bacteriology and ImmunologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of BacteriologyUniversity of CaliforniaDavisUSA

Personalised recommendations