The three-dimensional organization of lens fibers in the rabbit

A scanning electron microscopic reinvestigation
  • B. Willekens
  • G. Vrensen
Article

Abstract

The importance of the present reinvestigation of the three-dimensional structure of lens fibers in the rabbit is that it has shown the presence of all types of membrane specializations described before in one single lens of one species, the restricted distribution of some specializations, and the conformational changes within one fiber. Interlocking protrusions are present throughout the whole lens and must be considered as the main anchoring processes in the rabbit. Ball- and-socket junctions are present in restricted regions and can be considered as additional anchoring processes. Undulations of the apical and lateral edges of the hexagonal fibers and folds and bends of the lateral surface have a limited distribution. It is postulated that they may play a role in lens changes during accommodation.

Zusammenfassung

Die 3-dimensionale Ultrastruktur der Linsenfasern des Kaninchens wurde mit Hilfe des Rasterelektronenmikroskops aufs Neue untersucht. Es wurde gezeigt, daß alle die Membran-Spezialisationen, die vorher in unterschiedlichen Spezies beschrieben wurden, vorhanden sind in der Linse des Kaninchens. Weiter wurde gezeigt, daß einige von den Spezialisationen nur an bestimmten Stellen vorhanden sind und daß ein und dieselbe Faser unterschiedliche Konformationen haben kann. Die wichtigste Verankerung der Linsenfasern kommt zustande durch Protrusionen an den Kanten der hexagonalen Fasern. Daneben sind Kugel-Verankerungen vorhanden, aber nur an bestimmten Stellen, und diese spielen nur eine additionelle Rolle. Undulationen der apikalen und lateralen Flächen und Falten der lateralen Flächen sind auch nur in bestimmten Regionen vorhanden. Es wird postuliert, daß die Falten und Undulationen eine Rolle spielen bei Veränderungen der Linse während der Akkommodation.

References

  1. Alpern A (1969) Accommodation. In: Davson H (ed) The Eye, 3. Academic Press, New York, Ch 8Google Scholar
  2. Bloom W, Fawcett DW (1975) A textbook of Histology. Saunders, Philadelphia, p 95Google Scholar
  3. Broekhuyse RM, Kuhlmann ED, Bijvelt J, Verkley AJ, Ververgaart PHJTh (1978) Lens membranes III freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing. Exp Eye Res 26:147–156Google Scholar
  4. Cohen AI (1965) The electron microscopy of the normal human lens. Invest Ophthalmol 4:433–446Google Scholar
  5. Dickson DH, Crock GW (1972) Interlocking patterns on primate lens fibers. Invest Ophthalmol 11:809–815Google Scholar
  6. Duke-Elder S, Abrams D (1970) Adjustments to the optical system accommodation. In Duke-Elder (ed) System of Ophthalmology, v. Ophthalmic Optics and Refraction, Kimpton, London, Ch IVGoogle Scholar
  7. Farnsworth PN, Fu SCJ, Burke PA, Bahia I (1974) Ultrastructure of rat eye lens. Invest Ophthalmol 13:274–279Google Scholar
  8. Futagami T (1962) Electron microscopic study of lens fiber with special references to its processes. Acta Soc Ophthalmol Jpn 66:130–140Google Scholar
  9. Goodenough DA, Dick JSBII, Lyons JE (1980) Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze substitution autoradiography and electron microscopy. J Cell Biol 86:576–589Google Scholar
  10. Hansson H (1970) Scanning electron microscopy of the lens of the adult rat. Z Zellforsch Mikrosk Anat 107:187–198Google Scholar
  11. Harding CV, Susan S, Murphy H (1976) Scanning electron microscopy of the adult rabbit lens. Ophthalmic Res 8:443–455Google Scholar
  12. Harding CV, Susan S, Jampel RS, Cohen E (1978) Unit membrane redundancy in spherical structures within the ocular lens. Opthalmic Res 10:7–15Google Scholar
  13. Hogan MJ, Alvarado JA, Weddell JP (1971) Histology of the Human Eye, Saunders, Philadelphia Ch 12Google Scholar
  14. Kuwabara T (1975) The maturation of the lens cell: a morphologic study. Exp Eye Res 20:427–443Google Scholar
  15. Litwin JA (1980) Freeze-fracture demonstration of intercellular junctions in rabbit lens. Exp Eye Res 30:211–214Google Scholar
  16. Matsuto T (1973) Scanning electron microscopic studies on the normal and cataractous human lenses. Acta Soc Ophthalmol Jpn 77:853–872Google Scholar
  17. Ohkuma M (1976) Freeze-fracture replicas of tight and gap junctions in the eye. In: Yamada E and Mishima S (eds) Proc 3rd Symp. Structures of the Eye, III, Jap J Ophthalmol, pp 87–102Google Scholar
  18. Okinami S (1978) Freeze-fracture replica of the primate lens. Albrecht von Graefes Arch Klin Ophthalmol 209:52–58Google Scholar
  19. Peters A (1970) The fixation of central nervous tissue and analysis of electron micrographs, with special reference to the cerebral cortex. In: Nauta WJH and Ebbeson SOE (eds) Contemporary Research Methods in Neuroanatomy, Springer, Berlin, pp 56–76Google Scholar
  20. Philipson BT, Hanninen L, Balazs EA (1975) Cell contacts in human and bovine lenses. Exp Eye Res 21:205–219Google Scholar
  21. Sakuragawa M, Kuwabara T, Kinoshita JH, Fukui HN (1975) Swelling of lens fibers. Exp Eye Res 21:381–394Google Scholar
  22. Wanko T, Gavin MA (1959) Electron microscope study of lens fibers. J Biophys Biochem Cytol 6:97–102Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • B. Willekens
    • 1
  • G. Vrensen
    • 1
  1. 1.Department of MorphologyThe Netherlands Ophthalmic Research InstituteEK AmsterdamThe Netherlands

Personalised recommendations