Archives of Microbiology

, Volume 140, Issue 2–3, pp 139–146 | Cite as

A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways

  • Marion Stieb
  • Bernhard Schink
Original Papers

Abstract

From marine anoxic mud, a new strictly anaerobic, Gram-negative, non-sporeforming bacterium was isolated with 3-hydroxybutyrate as substrate. 3-Hydroxybutyrate and crotonate were fermented to acetate and butyrate. Glycerol was fermented to 1,3-propanediol and 3-hydroxypropionate. Acetate and formate were the only products of pyruvate or citrate fermentation. Glucose and fructose were fermented to acetate, formate and ethanol. Malate and fumarate were fermented to acetate, formate and propionate. Neither sulfate, sulfur, nor nitrate was reduced. The DNA base ratio was 32.2±0.5 mol% guanine plus cytosine. Strain CuHbu1 is described as type strain of a new genus and species, Ilyobacter polytropus gen. nov. sp. nov., in the family Bacteroidaceae.

Key words

Ilyobacter polytropus gen. nov. sp. nov. genus and species description Anaerobic degradation 3-Hydroxybutyrate Butyrate fermentation Propionate fermentation Ethanol fermentation Glycerol degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association Inc, ed (1969) Standard methods for the examination of water and wastewater including bottom sediments and sludge. New York, pp 604–609Google Scholar
  2. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50:23–44Google Scholar
  3. Beisenherz G, Boltze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E, Pfleiderer G (1953) Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase and Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z Naturforsch 8B:555–577Google Scholar
  4. Bergmeyer HU, Holz G, Klotzsch H, Lang G (1963) Phosphotrans-acetylase aus Clostridium kluyveri. Biochem Z 338:114–121Google Scholar
  5. Buchanan RE, Gibbons NE (eds) (1974) Bergey's manual of determinative bacteriology, 8th edn. Williams and Wilkins Co., BaltimoreGoogle Scholar
  6. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  7. Conradt HH, Hohmann-Berger M, Hohmann H-P, Blaschkowski HP, Knappe J (1984) Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: isolation and structural properties. Arch Biochem Biophys 228:133–142Google Scholar
  8. Dagley S (1969) Citrate lyase. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press Inc, New York, pp 160–163Google Scholar
  9. De Ley J (1970) Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754Google Scholar
  10. De Vries W, Wyck-Kapteyn WM van, Stouthamer AH (1973) Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J Gen Microbiol 76:31–41Google Scholar
  11. De Vries W, Wyck-Kapteyn MC van, Oosterhuis SKH (1974) The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J Gen Microbiol 81:69–78Google Scholar
  12. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127Google Scholar
  13. Herron JS, King JD, White DC (1978) Recovery of poly-β-hydroxybutyrate from estuarine microflora. Appl Environ Microbiol 35:251–257Google Scholar
  14. Hollaus F, Sleytr V (1972) On the taxonomy and fine structure of some hyperthermophilic saccharolytic Clostridia. Arch Microbiol 86:129–149Google Scholar
  15. Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminoccoccus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies hydrogen transfer. J Bacteriol 114:1231–1240Google Scholar
  16. Jungermann K, Leimenstoll G, Rupprecht E, Thauer RK (1971) Demonstration of NADH-ferredoxin reductase in two saccharolytic Clostridia. Arch Microbiol 80:370–372Google Scholar
  17. Knappe J, Blaschkowski HP, Gröbner P, Schmit T (1974) Pyruvate formate lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur J Biochem 50:253–263Google Scholar
  18. Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Analyt Chem 260:8–10Google Scholar
  19. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable Gram straining technic for diagnosis of surgical infections. American J Surgery 130:341–346Google Scholar
  20. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol BJiol 3:208–218Google Scholar
  21. McInerney MJ, Bryant M, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135Google Scholar
  22. Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gaschromatographic analysis. Anal Chem 38:514–515Google Scholar
  23. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288Google Scholar
  24. Robinson JM, Ritchie AE (1981) Emendation of Acetivibrio and description of Acetivibrio ethanolgignens, a new species from the colons of pigs with dysentery. Int J Syst Bacteriol 31:333–338Google Scholar
  25. Rose JA, Grunberg-Manago M, Korey SR, Ochoa S (1954) Enzymatic phosphorylation of acetate. J Biol Chem 211:737–756Google Scholar
  26. Schink B (1984) Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nor. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41Google Scholar
  27. Schink B, Pfennig N (1982a) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201Google Scholar
  28. Schink B, Pfennig N (1982b) Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate. Arch Microbiol 133:209–216Google Scholar
  29. Schink B, Schlegel HG (1979) The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification and biochemical properties. Biochim Biophys Acta 567:315–324Google Scholar
  30. Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a new, strictly anaerobic, Gram negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913Google Scholar
  31. Schink B, Thompson TE, Zeikus JG (1982) Characterization of Propionispira arboris gen. nov sp. nov., a nitrogen-fixing anaerobe common to wetwoods of living trees. J Gen Microbiol 128:2771–2779Google Scholar
  32. Slininger P, Bothast RJ, Smiley KL (1983) Production of 3-hydroxypropionaldehyde from glycerol. Appl Environ Microbiol 46:62–67Google Scholar
  33. Stern JR (1967) Oxaloacetate decarboxylase of Aerobacter aerogenes. 1. Inhibition by avidin and requirement for sodium ion. Biochemistry 6:3545–3551Google Scholar
  34. Stouthammer AH (1979) The search for correlation betweeen theoretical and experimental growth yields. In: Quayle JR (ed) International review of biochemistry, vol 21, Microbial biochemistry. University Park Press, Baltimore, pp 1–47Google Scholar
  35. Tanner ACR, Badger S, Lai Ch, Listgarten MA, Visconti RA, Socransky SS (1981) Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteriodes gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol 31:432–445Google Scholar
  36. Thauer RK, Jungermann K, Henninger H, Wenning H, Decker K (1968) The energy metabolism of Clostridium kluyveri. Eur J Biochem 4:173–180Google Scholar
  37. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  38. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167Google Scholar
  39. Walther R (1977) Die Vergärung von Citrat durch Clostridium sphenoides: Nachweis einer glutamatabhängigen Citrat-Lyase. Diss Univ GöttingenGoogle Scholar
  40. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducting bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Arch Microbiol 129:395–400Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Marion Stieb
    • 1
  • Bernhard Schink
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations