Archives of Microbiology

, Volume 151, Issue 6, pp 506–512 | Cite as

Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs

  • Elke Windberger
  • Robert Huber
  • Antonio Trincone
  • Hans Fricke
  • Karl O. Stetter
Original Papers


Three new strains of eubacterial hyperthermophiles were isolated from continental solfataric springs at Lac Abbé (Djibouti, Africa). Due to their morphology, lipids, and RNA polymerases they belong to the genus Thermotoga. Strains LA4 and LA10 are closely related to Thermotoga neapolitana found up to now only in the marine environment. Strain LA 3 differs from Thermotoga maritima and Thermotoga neapolitana in significant physiological and molecular properties. It is described as the new species Thermotoga thermarum.

Key words

Eubacteria Evolution Extreme thermophile Thermotoga 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791Google Scholar
  2. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  3. Belkin S, Wirsen CO, Jannasch HW (1986) A new sulfur-reducing extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51:1180–1185Google Scholar
  4. Birnstiel ML, Sells BH, Purdom IF (1972) Kinetic complexity of RNA molecules. J Mol Biol 63:21–39Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254Google Scholar
  6. De Rosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter KO, Trincone A (1988) Lipid structures in Thermotoga maritima. Chemical Society Chem Comm (in press)Google Scholar
  7. Gillespie S, Gillespie D (1971) Ribonucleic acid- deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem J 125:481–487Google Scholar
  8. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50Google Scholar
  9. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growthing up to 90°C. Arch Microbiol 144:324–333Google Scholar
  10. Huber G, Huber R, Jones B, Lauerer G, Neuner A, Segerer A, Stetter KO, Degens ET (1989) Hyperthermophilic archae- and eubacteria occurring within Indonesian hydrothermal areas. Mitt Geol Paläont Inst Univ Hamburg 69:123–456Google Scholar
  11. International Journal of Systematic Bacteriology (1986) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 22. Int J Syst Bacteriol 36:573–576Google Scholar
  12. Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104Google Scholar
  13. Kelly RB, Cozzarelli NR, Deutscher MP, Lehman JR, Kornberg A (1970) Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem 245:39–45Google Scholar
  14. König H (1984) Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481Google Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  16. Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. System Appl Microbiol 8:100–105Google Scholar
  17. Marmur J, Doty P (1961) Thermal renaturation of deoxyribonucleic acids. J Mol Biol 3:585–594Google Scholar
  18. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118Google Scholar
  19. Ouchterlony Ö (1962) Diffusion-in-gel methods for immunological analysis II. Progr Allergy 6:30–154Google Scholar
  20. Stetter KO (1977) Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus casei. Isolation of transcription factor y. Hoppe-Seyler's Z Physiol Chem 358:1093–1104Google Scholar
  21. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260Google Scholar
  22. Williams WJ (1979) Handbook of anion determination. Butterworths, London, pp 570–572Google Scholar
  23. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  24. Zillig W, Zechel K, Halbwachs HJ (1970) A new method of large scale preparation of highly purified DNA-dependent RNA-polymerase from E. coli. Hoppe-Seyler's Z Physiol Chem 351:221–224Google Scholar
  25. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella”-group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Elke Windberger
    • 1
  • Robert Huber
    • 1
  • Antonio Trincone
    • 2
  • Hans Fricke
    • 3
  • Karl O. Stetter
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgGermany
  2. 2.Istituto per la Chimica di Molecole di Interesse BiologicoArco Felice (Napoli)Italy
  3. 3.Max-Planck-Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations