Planta

, Volume 145, Issue 3, pp 225–232

Calcium ionophore A 23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum

  • Hans-Dieter Reiss
  • Werner Herth
Article

Abstract

The effects of the calcium inonophore A 23187 on growing pollen tubes of Lilium longiflorum Thunb. cv. Ace were investigated with the light and electron microscope. Tip growth is slowed down and stopped within 20 min after application of 5x10-5 M ionophore A 23187. The main effects are the disappearance of the clear zone at the pollen tube tip and a thickening of the cell wall at the tip and at the pollen tube flanks. This effect on cell wall formation is confirmed under the electron microscope: The vesicular zone in treated pollen tubes is reduced, numerous vesicular contents are irregularly integrated in the pollen tube wall not only in the tip, but over a long distance of the pollen tube wall. In addition, effects on mitochondria and dictyosomes are observed. These results are interpreted as a disorientation of the Ca2+-based orientation mechanism of exocytosis after equilibration of the Ca2+-gradient

Key words

Ca2+ gradient Disorientation of exocytosis Ionophore A23187 Lilium Pollen tubes Tip growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreo, C.S., Vallejos, R.H.: Uncoupling of photophosphorylation in spinach chloroplasts by the ionophorous antibiotic A 23187. FEBS Lett. 46, 343–346 (1974)Google Scholar
  2. Blevins, D.G., Barnett, N.M., Bottino, P.J.: The effects of calcium and the ionophore A 23187 on nodulation, nitrogen fixation and growth of soybeans. Physiol. Plant. 41, 235–238 (1977)Google Scholar
  3. Borle, A.B., Studer, R.: Effects of calcium ionophores on the transport and distribution of calcium, in isolated cells and in liver and kidney slices. J. Membr. Biol. 38, 51–72 (1978)Google Scholar
  4. Brewbaker, J.L., Kwack, B.H.: The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50, 859–865 (1963)Google Scholar
  5. Cochrane, D.E., Douglas, W.W.: Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48/80 or the ionophores A-23187 and X-537 A. Proc. Nat. Acad. Sci. U.S.A. 71, 408–412 (1974)Google Scholar
  6. Dickinson, D.B.: Permeability and respiratory properties of germinating pollen. Physiol. Plant. 20, 118–127 (1967)Google Scholar
  7. Feinman, R.D., Detwiler, T.C.: Platelet secretion induced by divalent cation ionophores. Nature 249, 172–173 (1974)Google Scholar
  8. Foreman, J.C., Mongar, J.L., Gomperts, B.D.: Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature 245, 249–251 (1973)Google Scholar
  9. Franke, W.W., Herth, W., Van Der Woude, W.J., Morré D.J.: Tubular and filamentous structures in pollen tubes: possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105, 317–341 (1973)Google Scholar
  10. Herth, W.: ionophore A 23187 stops tip growth, but not cytoplasmic streaming, in pollen tubes of Lilium longiflorum. Protoplasma 96, 275–282 (1978)Google Scholar
  11. Jaffe, L.A., Weisenseel, M.H., Jaffe, L.F.: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol. 67, 488–492 (1975)Google Scholar
  12. Morré, D.J., Van Der Woude, W.J.: Origin and growth of cell surface components. In: Macromolecules regulating growth and development. The 30th Symposium of the Society for Developmental Biology, p. 81–111. New York: Academic Press 1974Google Scholar
  13. Plattner, H., Fuchs, S.: X-ray microanalysis of calcium binding sites in Paramecium. With special reference to exocytosis. Histochemistry 45, 23–47 (1975)Google Scholar
  14. Pressman, B.C.: Properties of ionophores with broad range cation selectivity. Fed. Proc. 32, 1698–1703 (1973)Google Scholar
  15. Reed, P.W., Lardy, H.A.: Antibiotic A 23187 as a probe for the study of calcium and magnesium function in biological systems. In: The role of membranes in metabolic regulation, p. 111–131. Mehlman, M.A., Hanson, R.W., eds. New York: Academic Press 1972Google Scholar
  16. Rosen, W.G.: Ultrastructure and physiology of pollen. Ann. Rev. Plant Physiol 19, 435–462 (1968)Google Scholar
  17. Schliwa, M.: The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A 23187 J. Cell Biol. 70, 527–540 (1976)Google Scholar
  18. Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)Google Scholar
  19. Van Der Woude, W.J., Morré, D.J., Bracker, C.E.: Isolation and characterization of secretory vesicles in germinated pollen of Lilium longiflorum. J. Cell Sci. 8, 331–351 (1971)Google Scholar
  20. Weisenseel, M.H., Jaffe, L.F.: The major growth currrent through lily pollen tubes enters as K+ and leaves as H+. Planta 133, 1–7 (1976)Google Scholar
  21. Weisenseel, M.H., Nucitelli, R., Jaffe, L.F.: Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hans-Dieter Reiss
    • 1
  • Werner Herth
    • 1
  1. 1.Lehrstuhl für zellenlehreUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations