Nitro musk

  • Hellmut Ippen
Short Communication

Abstract

The detection of nitro musk compounds in breast milk and in human adipose tissue is mainly due to the use of such substances as perfume in detergents from which they enter the sewage and finally the whole freshwater system. Due to their low degradability and a high biological concentration factor, they enter the food chain without the toxicological investigations to date allowing any certain conclusions on the effect of such accumulation in the human organism or on the effect of accumulation in ecological systems.

Key words

Nitro musk compounds Detergents Fish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis DA, Taylor JM, Jones WI, et al. (1967) Toxicity of musk ambrette. Toxicol Appl Pharmacol 10:405–410Google Scholar
  2. 2.
    Ford RA, Api AM, Newberne PM (1990) 90-Day dermal toxicity study and neurotoxicity evaluation of nitromusks in the albino rat. Food Chem Toxicol 28:55–61Google Scholar
  3. 3.
    Hahn J (1993) Untersuchungen zum Vorkommen von Xylol-Moschus in Fischen. Dtsch Lebensm Rdsch 80:175–177Google Scholar
  4. 4.
    Iwata N, Minegishi K, Suzuki K, et al. (1993) An unusual profile of musk xylene-induced drug-metabolizing enzymes in rat liver. Biochem Pharmacol 45:1659–1665Google Scholar
  5. 5.
    Iwata N, Susuki K, Minegishi K, et al. (1993) Induction of cytochrome P4501A2 by musk analogues and other inducing agents in liver. Eur J Pharmacol 248:243–250Google Scholar
  6. 6.
    Maekawa A, Matsushima Y, Onodera H, et al (1990) Long-term toxicity/carcinogenicity of musk xylol in B6C3F mice. Food Chem Toxicol 28:581–587Google Scholar
  7. 7.
    Minegishi KI, Nambaru S, Fukoaka M, et al. (1991) Distribution, metabolism, and excretion of musk xylene in rats. Arch Toxicol 65:273–282Google Scholar
  8. 8.
    Nair J, Ohshima H, Malaveille C, et al. (1986) Identification, occurrence and mutagenicity in Salmonella typhimurium of two synthetic nitroarenes: musk ambrette and musk xylene in Indian chewing tobacco and betel quid. Food Chem Toxicol 24:27–31Google Scholar
  9. 9.
    Rimkus G, Wolf M (1993) Nachweis von Nitromoschusverbindungen in Frauenmilch und Humanfett. Dtsch Lebensm Rdsch 89:103–107Google Scholar
  10. 10.
    Rimkus G, Wolf M (1993) Rückstände und Verunreinigungen in Fischen aus Aquakultur. 2. Nachweis von Moschus Xylol und Moschus Keton in Fischen. Dtsch Lebensm Rdsch 89:171–175Google Scholar
  11. 11.
    Spencer PS, Bischoff MC (1983) Skin as a route of entry for neurotoxic substances. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 2nd edn. Washington, pp 611–626Google Scholar
  12. 12.
    Spencer PS, Bischoff-Fenton MC, Moreno DM, et al. (1984) Neurotoxic properties of musk ambrette. Toxicol Appl Pharmacol 75:571–575Google Scholar
  13. 13.
    Yamagishi T, Miyazaki T, Horii S, et al. (1981) Identifications of musk xylene and musk ketone in freshwater fish collected from the Tama river, Tokyo. Bull Environ Contain Toxicol 26:656–662Google Scholar
  14. 14.
    Yamagishi T, Miyazaki T, Horii S, et al. (1983) Synthetic musk residues in biota and water from Tama river in Tokyo Bay (Japan). Arch Environ Contam Toxicol 12:83–89Google Scholar
  15. 15.
    Yurawecz MP, Puma BJ (1983) Nitro musk fragrances as potential contaminats in pesticide residue analysis. J Ass Off Anal Chem 66:241–247Google Scholar
  16. 16.
    Zheng GQ, Kenney PM, Lam LK (1992) Isolation and biological evaluation of potential cancer chemopreventive agents from ambrette musk residue. J Pharm Sci 81:950–953Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Hellmut Ippen
    • 1
  1. 1.GöttingenGermany

Personalised recommendations