Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multivariate analysis of spatial patterns: a unified approach to local and global structures

Abstract

We propose a new approach to the multivariate analysis of data sets with known sampling site spatial positions. A between-sites neighbouring relationship must be derived from site positions and this relationship is introduced into the multivariate analyses through neighbouring weights (number of neighbours at each site) and through the matrix of the neighbouring graph. Eigenvector analysis methods (e.g. principal component analysis, correspondence analysis) can then be used to detect total, local and global structures. The introduction of the D-centring (centring with respect to the neighbouring weights) allows us to write a total variance decomposition into local and global components, and to propose a unified view of several methods. After a brief review of the matrix approach to this problem, we present the results obtained on both simulated and real data sets, showing how spatial structure can be detected and analysed. Freely available computer programs to perform computations and graphical displays are proposed.

This is a preview of subscription content, log in to check access.

References

  1. Banet, T.A. and Lebart, L. (1984) Local and partial principal components analysis (PCA) and correspondence analysis (CA). In COMPSTAT 84, International Association for Statistical Computing (eds), Physica-Verlag, Vienna, pp. 113–23.

  2. Borcard, D., Legendre, P. and Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology 73, 1045–55.

  3. Borcard, D. and Legendre, P. (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1, 37–61.

  4. Bournaud, M. (1990) Peuplement d'oiseaux et propriétés des écocomplexes de la plaine du Rhone: descripteurs de fonctionnement global et gestion des berges. Rapport sur programme SRETIE, Ministère de l'Environnement, pp. 1–135.

  5. Cailliez, F. and Pages, J.P. (1976) Introduction à l'Analyse des Données. SMASH, Paris.

  6. Chessel, D. and Doledec, D. (1993) ADE Software. Multivariate Analyses and Graphical Display for Environmental Data. Version 3.7. User manual (in French), 8 sections, 750 pages. URA CNRS 1451, Université de Lyon 1, 69622 Villeurbanne Cedex, France.

  7. Chessel, D. and Mercier, P. (1993) Couplage de triplets statistiques et liaisons espèces-environnement. In Biométrie et Environnement, J.D.Lebreton and B. Asselain (eds), Masson, Paris, pp. 15–44.

  8. Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 829–36.

  9. Cleveland, W.S. and Devlin, S.J. (1988) Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596–610.

  10. Cliff, A.D. and Ord, J.K. (1973) Spatial Autocorrelation.Pion, London.

  11. Doledec, S. and Chessel, D. (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology 31, 277–94.

  12. Escoufier, Y. (1982) L'analyse des tableaux de contingence simples et multiples. Metron 40, 53–77.

  13. Escoufier, Y. (1987) The duality diagram: a means for better practical applications. In Developments in Numerical Ecology, P. Legendre and L. Legendre (eds), NATO Advanced Study Institute, Series G (Ecological Sciences). Springer-Verlag, Berlin, pp. 139–56.

  14. Faraj, A. (1993) Analyse de contiguité: une analyse discriminante généralisée a plusieurs variables qualitatives. Revue de Statistique Appliquée 41, 73–84.

  15. Geary, R.C. (1954) The contiguity ratio and statistical mapping. The Incorporated Statistician 5, 115–45.

  16. Gittins, R. (1968) Trend surface analysis of ecological data. Journal of Ecology 56, 845–69.

  17. Green, P.J. and Sibson, R. (1977) Computing Dirichlet tesselations in the plane. The Computer Journal 21, 168–73.

  18. Lebart, L. (1969) Analyse statistique de la contiguité. Publication de l'Institut de Statistiques de l'Université de Paris 28, 81–112.

  19. Lee, P.J. (1969) Theory and application of canonical trend surface analysis. Journal of Geology 77, 303–18.

  20. Lee, P.J. (1981) The most predictable surface (MPS) mapping method in petroleum exploration. Bulletin of Canadian Petroleum Geology 29, 224–40.

  21. Le Foll, Y. (1982) Pondération des distances en analyse factorielle. Statistiques et Analyse des Données 7, 13–31.

  22. Legendre, P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–73.

  23. Moran, P.A.P. (1948) The interpretation of statistical maps. Journal of the Royal Statistical Society B 10, 243–51.

  24. Pigliucci, M. and Barbujani, G. (1991) Geographical patterns of gene frequencies in Italian populations of Ornithogalum montanun (Liliaceae). Genetical Research, Cambridge 58, 95–104.

  25. Ripley, B.D. (1981) Spatial Statistics. Wiley, New York.

  26. Schorn, P. (1991) Implementing the XYZ GeoBench: A programming environment for geometric algorithms. In Computational Geometry: Methods, Algorithms and Applications, H. Bieri and H. Noltemeier (eds), Proc. CG'91, International Workshop on Computational Geometry, Bern, March 1991, Lecture Notes in Computer Science 553, Springer-Verlag, Berlin, pp. 187–202.

  27. Sibson, R. (1980) The Dirichlet tesselation as an aid in data analysis. Scandinavian Journal of Statistics 7, 14–20.

  28. Solow, A.R. (1994) Detecting change in the composition of a multispecies community. Biometrics 50, 556–65.

  29. ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67, 1167–79.

  30. ter Braak, C.J.F., Juggins, S., Birks, H.J.B. and Van der Voet, H. (1993) Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environment calibration. In Multivariate Environmental Statistics, G.P. Patil and C.R. Rao (eds), North-Holland, Amsterdam, pp. 525–60.

  31. Thioulouse J., Dolédec S., Chessel D. and Olivier J.M. (1995) ADE software: multivariate analysis and graphical display of environmental data. In Software per l'ambiente, G. Guariso and A. Rizzoli (Eds), Patron editore, Bologna, pp. 57–62.

  32. Upton, G.J.G., and Fingleton, B. (1985) Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data. Wiley, Chichester.

  33. van den Wollenberg, A.L. (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42, 207–19.

  34. Wartenberg, D. (1985a) Canonical trend surface analysis: a method for describing geographic patterns. Systematic Zoology 34, 259–79.

  35. Wartenberg, D. (1985b) Multivariate spatial correlation: a method for exploratory geographical analysis. Geographical Analysis 17, 263–83.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thioulouse, J., Chessel, D. & Champely, S. Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ Ecol Stat 2, 1–14 (1995). https://doi.org/10.1007/BF00452928

Download citation

Keywords

  • Correspondence analysis
  • Geary's index
  • global structure
  • local structure
  • Moran's index
  • neighbouring relationship
  • principal component analysis
  • spatial correlation analysis
  • spatial ordination