A principle of natural self-organization
- 1.4k Downloads
- 688 Citations
Abstract
This paper is the first part of a trilogy, which comprises a detailed study of a special type of functional organization and demonstrates its relevance with respect to the origin and evolution of life. Self-replicative macromolecules, such as RNA or DNA in a suitable environment exhibit a behavior, which we may call Darwinian and which can be formally represented by the concept of the quasi-species. A quasi-species is defined as a given distribution of macromolecular species with closely interrelated sequences, dominated by one or several (degenerate) master copies. External constraints enforce the selection of the best adapted distribution, commonly referred to as the wild-type. Most important for Darwinian behavior are the criteria for internal stability of the quasi-species. If these criteria are violated, the information stored in the nucleotide sequence of the master copy will disintegrate irreversibly leading to an error catastrophy. As a consequence, selection and evolution of RNA or DNA molecules is limited with respect to the amount of information that can be stored in a single replicative unit. An analysis of experimental data regarding RNA and DNA replication at various levels of organization reveals, that a sufficient amount of information for the build up of a translation machinery can be gained only via integration of several different replicative units (or reproductive cycles) through functional linkages. A stable functional integration then will raise the system to a new level of organization and thereby enlarge its information capacity considerably. The hypercycle appears to be such a form of organization.
Keywords
Experimental Data Nucleotide Nucleotide Sequence Macromolecule Reproductive CyclePreview
Unable to display preview. Download preview PDF.
ReferencesReferences
- 1.Wright, S.: Genetics 16, 97 (1931)Google Scholar
- 2.Woese, C.R.: The Genetic Code. New York: Harper and Row 1967Google Scholar
- 3.Crick, F.C.R., et al.: Origins of Life 7, 389 (1976)Google Scholar
- 4.Eigen, M.: Naturwissenschaften 58, 465 (1971)Google Scholar
- 5.Bethe, H., in: Les Prix Nobel en 1967, p. 135. Stockholm 1969Google Scholar
- 6.Krebs, H., in: Nobel Lectures, Physiology or Medicine 1942–1962, p. 395. Amsterdam: Elsevier 1964Google Scholar
- 7.Spiegelmann, S.: Quart. Rev. Biophys. 4, 213 (1971); Haruna, I., Spiegelmann, S.: Proc. Nat. Acad. Sci. USA 54, 579 (1975); Mills, D.R., Peterson, R.L., Spiegelmann, S.: ibid. 58, 217 (1967)Google Scholar
- 8.Sumper, M., Luce, R.: ibid.Google Scholar
- 9.Küppers, B.-O.: Naturwissenschaften (to be published)Google Scholar
- 10.Kornberg, A.: DNA Synthesis. San Francisco: W.H. Freeman 1974Google Scholar
- 11.RNA-Phages (Zinder, N.D., ed.). Cold Spring Harbor Monograph Series, Cold Spring Harbor Laboratory 1975Google Scholar
- 12.Fisher, R.A.: Proc. Roy. Soc. B 141, 510 (1953); Haldane, J.B.S.: Proc. Camb. Phil. Soc. 23, 838 (1927); Wright, S.: Bull. Am. Math. Soc. 48, 233 (1942)Google Scholar
- 13.Eigen, M.: Ber. Bunsenges. physik. Chem. 80, 1059 (1976)Google Scholar
- 14.Dobzhansky, Th.: Genetics of the Evolutionary Process. New York: Columbia Univ. Press 1970Google Scholar
- 15.Darwin, Ch.: Of the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Paleontological Society 1854. The Origin of Species, Chapter 4, London 1872; Everyman's Library, London: Dent and Sons 1967Google Scholar
- 16.Darwin, Ch., Wallace, A.R.: On the Tendency of the Species to Form Varieties and on the Perpetuation of the Species by Natural Means of Selection. J. Linn. Soc. (Zoology) 3, 45 (1858)Google Scholar
- 17.Eigen, M., Winkler-Oswatitsch, R.: Ludus Vitalis, Mannheimer Forum 73/74, Studienreihe Boehringer, Mannheim 1973Google Scholar
- 18.Eigen, M., Winkler-Oswatitsch, R.: Das Spiel. München: Piper 1975Google Scholar
- 19.Schrödinger, E.: What is Life? Cambridge Univ. Press 1944Google Scholar
- 20.Thompson, C.J., McBride, J.L.: Math. Biosci. 21, 127 (1974)Google Scholar
- 21.Jones, B.L., Enns, R.H., Rangnekar, S.S.: Bull. Math. Biol. 38, 15 (1976); Jones, B.L.: ibid. 38, XX (1976)Google Scholar
- 22.Küppers, B.-O.: Dissertation, Göttingen 1975Google Scholar
- 23.Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. New York: Wiley-Interscience 1971Google Scholar
- 24.Sabo, D., et al.: to be publishedGoogle Scholar
- 25.Kimura, M., Ohta, T.: Theoretical Aspects of Population Genetics. Princeton, New Jersey: Princeton Univ. Press 1971Google Scholar
- 26.King, J.L., Jukes, T.H.: Science 164, 788 (1969)Google Scholar
- 27.Kramer, F.R., et al.: J. Mol. Biol. 89, 719 (1974)Google Scholar
- 28.Hoffmann, G.: Lecture at Meeting of the Senkenbergische Naturforscher Gesellschaft, April 1974Google Scholar
- 29.Tyson, J.J., in: Some Mathematical Questions in Biology (ed. Levin, S.A.). Providence, Rhode Island: AMS Press 1974Google Scholar
- 30.Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Urbana: Univ. of Illinois Press 1949Google Scholar
- 31.Brillouin, L.: Science and Information Theory. New York: Academic Press 1963Google Scholar
- 32.Domingo, E., Flavell, R.A., Weissmann, Ch.: Gene 1, 3 (1976)Google Scholar
- 33.Batschelet, E., Domingo, E., Weissmann, Ch.: ibid..Google Scholar
- 34.Weissmann, Ch., Feix, G., Slor, H.: Cold Spring Harbor Symp. Quant. Biol. 33, 83 (1968)Google Scholar
- 35.Spiegelmann, S.: Lecture at the Symposium: Dynamics and Regulation of Evolving Systems, Schloß Elmau, May 1977Google Scholar
- 36.Hall, E.W., Lehmann, I.R.: J. Mol. Biol. 36, 321 (1968)Google Scholar
- 37.Battula, N., Loeb, L.A.: J. Biol. Chem. 250, 4405 (1975)Google Scholar
- 38.Chang, L.M.S.: ibid.Google Scholar
- 39.Loeb, L.A., in: The Enzymes, Vol. X, p. 173 (ed. P.D. Boyer). New York-London: Academic Press 1974Google Scholar
- 40.Hopfield, J.J.: Proc. Nat. Acad. Sci. USA 71, 4135 (1974)Google Scholar
- 41.Englund, P.T.: J. Biol. Chem. 246, 5684 (1971)Google Scholar
- 42.Bessman, M.J., et al.: J. Mol. Biol. 88, 409 (1974)Google Scholar
- 43.Jovin, T.M.: Ann. Rev. Biochem. 45, 889 (1976)Google Scholar
- 44.Pörschke, D., in: Chemical Relaxation in Molecular Biology, p. 191 (Pecht, I., Rigler, R., eds.). Heidelberg: Springer 1977Google Scholar
- 45.Watson, J.D.: The Molecular Biology of the Gene. New York: Benjamin 1970Google Scholar
- 46.Ladner, J.E., et al.: Proc. Nat. Acad. Sci. USA 72, 4414 (1975)Google Scholar