, Volume 64, Issue 11, pp 541–565 | Cite as

A principle of natural self-organization

Part A: Emergence of the hypercycle
  • Manfred Eigen
  • Peter Schuster
The Hypercycle


This paper is the first part of a trilogy, which comprises a detailed study of a special type of functional organization and demonstrates its relevance with respect to the origin and evolution of life. Self-replicative macromolecules, such as RNA or DNA in a suitable environment exhibit a behavior, which we may call Darwinian and which can be formally represented by the concept of the quasi-species. A quasi-species is defined as a given distribution of macromolecular species with closely interrelated sequences, dominated by one or several (degenerate) master copies. External constraints enforce the selection of the best adapted distribution, commonly referred to as the wild-type. Most important for Darwinian behavior are the criteria for internal stability of the quasi-species. If these criteria are violated, the information stored in the nucleotide sequence of the master copy will disintegrate irreversibly leading to an error catastrophy. As a consequence, selection and evolution of RNA or DNA molecules is limited with respect to the amount of information that can be stored in a single replicative unit. An analysis of experimental data regarding RNA and DNA replication at various levels of organization reveals, that a sufficient amount of information for the build up of a translation machinery can be gained only via integration of several different replicative units (or reproductive cycles) through functional linkages. A stable functional integration then will raise the system to a new level of organization and thereby enlarge its information capacity considerably. The hypercycle appears to be such a form of organization.


Experimental Data Nucleotide Nucleotide Sequence Macromolecule Reproductive Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wright, S.: Genetics 16, 97 (1931)Google Scholar
  2. 2.
    Woese, C.R.: The Genetic Code. New York: Harper and Row 1967Google Scholar
  3. 3.
    Crick, F.C.R., et al.: Origins of Life 7, 389 (1976)Google Scholar
  4. 4.
    Eigen, M.: Naturwissenschaften 58, 465 (1971)Google Scholar
  5. 5.
    Bethe, H., in: Les Prix Nobel en 1967, p. 135. Stockholm 1969Google Scholar
  6. 6.
    Krebs, H., in: Nobel Lectures, Physiology or Medicine 1942–1962, p. 395. Amsterdam: Elsevier 1964Google Scholar
  7. 7.
    Spiegelmann, S.: Quart. Rev. Biophys. 4, 213 (1971); Haruna, I., Spiegelmann, S.: Proc. Nat. Acad. Sci. USA 54, 579 (1975); Mills, D.R., Peterson, R.L., Spiegelmann, S.: ibid. 58, 217 (1967)Google Scholar
  8. 8.
    Sumper, M., Luce, R.: ibid.Google Scholar
  9. 9.
    Küppers, B.-O.: Naturwissenschaften (to be published)Google Scholar
  10. 10.
    Kornberg, A.: DNA Synthesis. San Francisco: W.H. Freeman 1974Google Scholar
  11. 11.
    RNA-Phages (Zinder, N.D., ed.). Cold Spring Harbor Monograph Series, Cold Spring Harbor Laboratory 1975Google Scholar
  12. 12.
    Fisher, R.A.: Proc. Roy. Soc. B 141, 510 (1953); Haldane, J.B.S.: Proc. Camb. Phil. Soc. 23, 838 (1927); Wright, S.: Bull. Am. Math. Soc. 48, 233 (1942)Google Scholar
  13. 13.
    Eigen, M.: Ber. Bunsenges. physik. Chem. 80, 1059 (1976)Google Scholar
  14. 14.
    Dobzhansky, Th.: Genetics of the Evolutionary Process. New York: Columbia Univ. Press 1970Google Scholar
  15. 15.
    Darwin, Ch.: Of the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Paleontological Society 1854. The Origin of Species, Chapter 4, London 1872; Everyman's Library, London: Dent and Sons 1967Google Scholar
  16. 16.
    Darwin, Ch., Wallace, A.R.: On the Tendency of the Species to Form Varieties and on the Perpetuation of the Species by Natural Means of Selection. J. Linn. Soc. (Zoology) 3, 45 (1858)Google Scholar
  17. 17.
    Eigen, M., Winkler-Oswatitsch, R.: Ludus Vitalis, Mannheimer Forum 73/74, Studienreihe Boehringer, Mannheim 1973Google Scholar
  18. 18.
    Eigen, M., Winkler-Oswatitsch, R.: Das Spiel. München: Piper 1975Google Scholar
  19. 19.
    Schrödinger, E.: What is Life? Cambridge Univ. Press 1944Google Scholar
  20. 20.
    Thompson, C.J., McBride, J.L.: Math. Biosci. 21, 127 (1974)Google Scholar
  21. 21.
    Jones, B.L., Enns, R.H., Rangnekar, S.S.: Bull. Math. Biol. 38, 15 (1976); Jones, B.L.: ibid. 38, XX (1976)Google Scholar
  22. 22.
    Küppers, B.-O.: Dissertation, Göttingen 1975Google Scholar
  23. 23.
    Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. New York: Wiley-Interscience 1971Google Scholar
  24. 24.
    Sabo, D., et al.: to be publishedGoogle Scholar
  25. 25.
    Kimura, M., Ohta, T.: Theoretical Aspects of Population Genetics. Princeton, New Jersey: Princeton Univ. Press 1971Google Scholar
  26. 26.
    King, J.L., Jukes, T.H.: Science 164, 788 (1969)Google Scholar
  27. 27.
    Kramer, F.R., et al.: J. Mol. Biol. 89, 719 (1974)Google Scholar
  28. 28.
    Hoffmann, G.: Lecture at Meeting of the Senkenbergische Naturforscher Gesellschaft, April 1974Google Scholar
  29. 29.
    Tyson, J.J., in: Some Mathematical Questions in Biology (ed. Levin, S.A.). Providence, Rhode Island: AMS Press 1974Google Scholar
  30. 30.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Urbana: Univ. of Illinois Press 1949Google Scholar
  31. 31.
    Brillouin, L.: Science and Information Theory. New York: Academic Press 1963Google Scholar
  32. 32.
    Domingo, E., Flavell, R.A., Weissmann, Ch.: Gene 1, 3 (1976)Google Scholar
  33. 33.
    Batschelet, E., Domingo, E., Weissmann, Ch.: ibid..Google Scholar
  34. 34.
    Weissmann, Ch., Feix, G., Slor, H.: Cold Spring Harbor Symp. Quant. Biol. 33, 83 (1968)Google Scholar
  35. 35.
    Spiegelmann, S.: Lecture at the Symposium: Dynamics and Regulation of Evolving Systems, Schloß Elmau, May 1977Google Scholar
  36. 36.
    Hall, E.W., Lehmann, I.R.: J. Mol. Biol. 36, 321 (1968)Google Scholar
  37. 37.
    Battula, N., Loeb, L.A.: J. Biol. Chem. 250, 4405 (1975)Google Scholar
  38. 38.
    Chang, L.M.S.: ibid.Google Scholar
  39. 39.
    Loeb, L.A., in: The Enzymes, Vol. X, p. 173 (ed. P.D. Boyer). New York-London: Academic Press 1974Google Scholar
  40. 40.
    Hopfield, J.J.: Proc. Nat. Acad. Sci. USA 71, 4135 (1974)Google Scholar
  41. 41.
    Englund, P.T.: J. Biol. Chem. 246, 5684 (1971)Google Scholar
  42. 42.
    Bessman, M.J., et al.: J. Mol. Biol. 88, 409 (1974)Google Scholar
  43. 43.
    Jovin, T.M.: Ann. Rev. Biochem. 45, 889 (1976)Google Scholar
  44. 44.
    Pörschke, D., in: Chemical Relaxation in Molecular Biology, p. 191 (Pecht, I., Rigler, R., eds.). Heidelberg: Springer 1977Google Scholar
  45. 45.
    Watson, J.D.: The Molecular Biology of the Gene. New York: Benjamin 1970Google Scholar
  46. 46.
    Ladner, J.E., et al.: Proc. Nat. Acad. Sci. USA 72, 4414 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Manfred Eigen
    • 1
  • Peter Schuster
    • 2
  1. 1.Max-Planck-Institut für biophysikalische ChemieGöttingen
  2. 2.Institut für theoretische Chemie und Strahlenchemie der UniversitätWien

Personalised recommendations