Current Genetics

, Volume 9, Issue 8, pp 641–648

Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript

  • Gerhard Rödel
  • Andreas Körte
  • Fritz Kaudewitz
Article

Summary

We describe a mitochondrial suppressor mutation, which restores respiratory competence to the nuclear pet-mutant MK2. This mutant lacks the message of the mitochondrialcob-gene and instead accumulates a partially spliced pre-mRNA which is not translated. Complete processing and translation of thecob-RNA is restored by a rearrangement of the mitochondrial DNA, leading to a fusion of thecob-coding sequences with the leader ofoli1, the mitochondrial gene coding for subunit IX of the ATPase. We conclude that the nuclear gene affected in MK2 is essential to allow translation of transcripts which contain thecob-leader sequence.

Key words

pet-mutant Mitochondrial suppression cob-leader Translation deficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anziano PQ, Hanson DK, Mahler HR, Perlman PS (1982) Cell 30:925–932Google Scholar
  2. Bechmann H, Haid A, Schweyen RJ, Mathews S, Kaudewitz F (1981) J Biol Chem 256:3525–3531Google Scholar
  3. Berk AJ, Sharp PA (1978) Proc Natl Acad Sci USA 75:1274–1278Google Scholar
  4. Bonitz SG, Homison G, Thalenfeld BE, Tzagoloff A (1982) J Biol Chem 257:6268–6274Google Scholar
  5. Church GM, Gilbert W (1980) In: Joseph DR, et al (eds) Mobilization and reassembly of genetic information. Academic Press, New York London, pp 379–394Google Scholar
  6. Dieckmann CL, Tzagoloff A (1985) J Biol Chem 269:1513–1520Google Scholar
  7. Dieckmann CL, Bonitz SG, Hill J, Homison G, McGraw P, Pape L, Thalenfeld BE, Tzagoloff A (1982a) In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 213–223Google Scholar
  8. Dieckmann CL, Pape LK, Tzagoloff A (1982b) Proc Natl Acad Sci USA 79:1805–1809Google Scholar
  9. Dieckmann CL, Koerner TJ, Tzagoloff A (1984) J Biol Chem 259:4722–4731Google Scholar
  10. Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1982) Mol Gen Genet 179:469–482Google Scholar
  11. Dujon B (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 505–635Google Scholar
  12. Edwards JC, Christianson T, Mueller D, Biswas TK, Levens D, Li D, Wettstein J, Rabinowitz M (1983) In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1983, nucleomitochondrial interactions. de Gruyter, Berlin New York, pp 69–78Google Scholar
  13. Goldring ES, Grossman JI, Krupnick D, Cryer DR, Marmur J (1970) J Mol Biol 52:323–335Google Scholar
  14. Kreike J, Bechmann H, Van Hemert FJ, Schweyen RJ, Boer PH, Kaudewitz F, Groot GSP (1979) Eur J Biochem 101:607–617Google Scholar
  15. Lancashire WE, Mattoon JR (1979) Mol Gen Genet 170:333–344Google Scholar
  16. Lang BF, Kaudewitz F (1982) Curr Genet 6:229–235Google Scholar
  17. Lazowska J, Jacq C, Slonimski PP (1980) Cell 22:333–348Google Scholar
  18. Mahler HR, Hanson DK, Lamb MR, Perlman PP, Anziano PQ, Glans KR, Haldi ML (1982) In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 185–199Google Scholar
  19. Maxam MA, Gilbert W (1977) Proc Natl Acad Sci USA 74:560–564Google Scholar
  20. McMaster K, Carmichael GC (1977) Proc Natl Acad Sci USA 11:4835–4838Google Scholar
  21. Michaelis G, Mannhaupt G, Pratje E, Fischer E, Naggert J, Schweizer E (1982) In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 311–321Google Scholar
  22. Mueller PP, Reif MK, Zonghou S, Senstag C, Mason TL, Fox TD (1984) J Mol Biol 175:431–452Google Scholar
  23. Pillar T, Lang BF, Steinberger I, Vogt B, Kaudewitz F (1983) J Biol Chem 258:7954–7959Google Scholar
  24. Putrament A, Baranowska H, Prazmo W (1973) Mol Gen Genet 126:357–366Google Scholar
  25. Rigby PW, Dickman M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  26. Sherman F, Steward JW, Parker JH, Inhaber E, Shipman NA, Putterman GJ, Gardinsky RL, Margoliash E (1968) J Biol Chem 234:5446–5456Google Scholar
  27. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  28. Thalenfeld BE, Bonitz SG, Nobrega FG, Macino G, Tzagoloff A (1983) J Biol Chem 258:14065–14068Google Scholar
  29. Thomas P (1980) Proc Natl Acad Sci USA 77:5201–5205Google Scholar
  30. Weiss-Brummer B, Rödel G, Schweyen RJ, Kaudewitz F (1982) Cell 29:527–536Google Scholar
  31. Zennaro E, Grimaldi L, Baldacci G, Frontali L (1985) Eur J Biochem 147:191–196Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Gerhard Rödel
    • 1
  • Andreas Körte
    • 1
  • Fritz Kaudewitz
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der Ludwig-Maximilians-UniversitätMünchen 19Germany

Personalised recommendations