Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The origin of mutant cells: mechanisms by whichSaccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations

  • 48 Accesses

  • 17 Citations

Summary

Haploid yeast cells have about 50 copies of the mitochondrial genome, and a mutational event is unlikely to affect more than one of these at a time. This raises the question of how such cells, or their progeny, become fixed (homoplasmic) for the mutant alele. We have tested the roles of six hypothetical mechanisms in producing erythromycin-resistant mutant cells: (i) random partitioning of mitochondrial genomes at cell division; (ii) intracellular selection for mtDNA molecules of one genotype; (iii) intracellular random drift of mitochondrial allele frequencies; (iv) intercellular selection for cells of a particular mitochondrial genotype; (v) induction of mitochondrial gene mutations by the antibiotic used to select mutants; and (vi) reduction in the number of mitochondrial genomes per cell by the antibiotic. Our experiments indicate that intracellular selection plays the major role in producing erythromycin-resistant mutant cells in the presence of the antibiotic. In the absence of the antibiotic, the combined effects of random drift and random partitioning are most important in determining the fate of new mutations, most of which are lost rather than fixed. Our experiments provide no evidence for mutation induction or ploidy reduction by erythromycin.

This is a preview of subscription content, log in to check access.

References

  1. Backer J (1980) The origin of mutant cells: the mechanisms by whichSaccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations. PhD dissertation, The Ohio State University

  2. Birky CW Jr (1973) Genetics 74:421–432

  3. Birky CW Jr (1978) Ann Rev Genet 12:471–512

  4. Birky CW Jr (1983) Int Rev Cytol Suppl 15:49–89

  5. Birky CW Jr, Demko CA, Perlman PS, Strausberg R (1978) Genetics 89:615–651

  6. Birky CW Jr, VanWinkle-Swift KP, Sears BB, Boynton JE, Gillham NW (1981) Plasmid 6:173–192

  7. Birky CW Jr, Acton AR, Dietrich R, Carver M (1982) In: Attardi GA, Borst P, Slonimski PP (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 333–348

  8. Birky CW Jr, Maruyama T, Fuerst P (1983) Genetics 103:513–527

  9. Bisson L, Thorner J (1977) J Bacteriol 132:44–50

  10. Dujon B (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces. Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 505–635

  11. Dujon B, Bolotin-Fukuhara M, Coen D, Deutsch J, Netter P, Slonimski PP, Weill L (1976) Mol Gen Genet 143:131–165

  12. Gillham NW (1969) Am Nat 103:355–387

  13. Gillham NW (1978) Organelle heredity. Raven Press, New York

  14. Gillham NW, Boynton JE, Grant DM, Shepherd HS, Wurtz EA (1979) In: Cummings DJ (ed) 8th ICN-UCLA Symposia on Molecular and Cellular Biology: Extrachromosomal DNA. Academic Press, New York, pp 75–96

  15. Hartwell LH (1976) J Mol Biol 104:803–817

  16. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Science 183:46–51

  17. Johnston LH (1980) Curr Genet 2:175–180

  18. Karlin S (1975) Theor Pop Biol 7:364–398

  19. Knight JA (1980) Genetics 94:69–92

  20. Lee RW, Haughn GW (1980) Genetics 96:79–94

  21. Lewis JE, Birky CW Jr (1984) Curr Genet 8:81–84

  22. Luria SE, Delbruck M (1943) Genetics 28:491–511

  23. Newcombe HB (1949) Nature 164:150–151

  24. Newlon CS, Fangman WL (1975) Cell 5:423–428

  25. Putrament A, Baronowska H, Prazmo W (1973) Mol Gen Genet 126:357–366

  26. Putrament A, Polakowska R, Baranowska H, Ejchart A (1976) In: Bucher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. North Holland, Amsterdam, pp 415–418

  27. Rogers D, Bussey H (1978) Mol Gen Genet 162:173–182

  28. Sager R (1962) Proc Natl Acad Sci USA 48:2018–2026

  29. Sager R (1972) Cytoplsmic genes and organelles. Academic Press, New York

  30. Slater ML (1973) J Bacteriol 113:263–270

  31. Sloat FB, Pringle JR (1978) Science 200:1171–1173

  32. Thrailkill KM, Birky CW Jr, Luckeman G, Wolf K (1981) Genetics 96:237–262

  33. Treat L, Birky CW Jr (1980) Plasmid 4:261–275

  34. VanWinkle-Swift KP (1978) Nature 275:749–751

  35. Waxman MF, Birky CW Jr (1982) Curr Genet 5:171–180

  36. Williamson DH, Maroudas NG, Wilkie D (1971) Mol Gen Genet 111:209–223

  37. Williamson DH, Johnston LH, Richmond KMV, Game JC (1978) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977: genetics and biogenesis of mitochondria. de Gruyter, Berlin, pp 1–24

  38. Wiseman A, Attardi G (1978a) Mol Gen Genet 167:51–63

  39. Wiseman A, Attardi G (1978b) J Cell Biol 79:321a

  40. Wurtz EA, Sears BB, Rabert DK, Shepherd HS, Gillham NW, Boynton JE (1979) Mol Gen Genet 170:25–242

Download references

Author information

Correspondence to C. William Birky Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Backer, J.S., Birky, C.W. The origin of mutant cells: mechanisms by whichSaccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations. Curr Genet 9, 627–640 (1985). https://doi.org/10.1007/BF00449815

Download citation

Key words

  • Mitochondria
  • Mutation
  • Yeast
  • Selection
  • Random drift