, Volume 119, Issue 3, pp 147–156 | Cite as

Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3′∶5′-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans

  • F. T. Sabie
  • G. M. Gadd
Human and Animal Mycology


A yeast-mycelium (Y-M) transition in Candida albicans was induced by exogenous yeast extract, adenosine, adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), adenosine 3′∶5′ cyclic monophosphate (cAMP) and its analogue N6, O2′-dibutyryl adenosine 3′∶5′-cyclic monophosphate (dbcAMP) in defined liquid medium at 25°C. Adenosine 5′-triphosphate (ATP) was found to delay germ tube formation in yeast cells, whereas the cAMP phosphodiesterase inhibitors, theophylline and caffeine, induced a Y-M transition. Intracellular and extracellular cyclic AMP levels increased during the yeast-mycelium transition and maximum levels of intracellular cyclic AMP coincided with maximum germ tube formation. Of the many inducers and inhibitors of germ tube and mycelium formation in C. albicans tested, including incubation at 37°C or in the presence of 1.5mM CaCl2, the calmodulin inhibitor calmidazolium (R24571) added together with CaCl2 induced the highest intra- and extracellular cyclic AMP levels. These results confirm the involvement of cyclic AMP in the yeast-mycelium transition of C. albicans.

Key words

Candida albicans adenosine 3′5′-cyclic monophosphate cyclic AMP yeast-mycelium transition dimorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pall ML. Adenosine 3′∶5′-monophosphate in fungi. Microbiol Rev 1981; 45: 462–491.Google Scholar
  2. 2.
    San Blas F, San Blas G. Molecular aspects of fungal dimorphism. CRC Crit Rev Microbiol 1984; 11: 101–127.Google Scholar
  3. 3.
    Medoff J, Jacobson E, Medoff G. Regulation of dimorphism in Histoplasma capsulatum by cyclic AMP. J Bacteriol 1981; 145: 1452–1455.Google Scholar
  4. 4.
    Cooper LA, Edwards SW, Gadd GM. Involvement of adenosine 3′∶5′-cyclic monophosphate in the yeast-mycelium transition of Aureobasidium pullulons. J Gen Microbiol 1985; 131: 1589–1593.Google Scholar
  5. 5.
    Brunton, AH, Gadd, GM. The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3′∶5′-cyclic monophosphate (cyclic AMP) in the yeast-mycelium transition of Ceratocystis (=Ophiostoma) ulmi. FEMS Microbiol Lett 1989; 60: 49–54.Google Scholar
  6. 6.
    Van Laere AJ. Cyclic AMP, phosphodiesterase, and spore activation in Phycomyces blakesleeanus. Exp Mycol 1986; 10: 52–59.Google Scholar
  7. 7.
    Van Laere AJ. Biochemistry of spore germination in Phycomyces. FEMS Microbiol Rev 1986; 32: 189–198.Google Scholar
  8. 8.
    Tomes C, Moreno S. Phosphodiesterase activity and cyclic AMP content during early germination of Mucor rouxii spores. Exp Mycol 1990; 14: 78–83.Google Scholar
  9. 9.
    Laychock SG. Coordinate interactions of cyclic nucleotide and phospholipid metabolizing pathways in calcium-dependent cellular processes. Curr Top Cell Reg 1989; 30: 203–242.Google Scholar
  10. 10.
    Trinci APJ, Robson GD, Wiebe NG, Cuncliffe B, Naylor TW. 1990. Growth and morphology of Fusarium graminearum and other fungi in batch and continuous culture. In: RK Poole, MJ Bazin, CW Keevil (eds), Microbial growth dynamics, IRL Press, Oxford, pp. 17–38.Google Scholar
  11. 11.
    Odds FC. Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 1985; 12: 45–93.Google Scholar
  12. 12.
    Soll DR. Candida albicans. In: PJ Szaniszlo (ed), Fungal dimorphism with emphasis on fungi pathogenic for humans. New York: Plenum Press, 1985; 258–285.Google Scholar
  13. 13.
    Soll DR. The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioassays 1986; 5: 5–11.Google Scholar
  14. 14.
    Niimi M, Niimi K, Tokunaga J, Nakayama H. Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol 1980; 142: 1010–1014.Google Scholar
  15. 15.
    Chattaway FW, Wheeler PR, O'Reilly J. Involvement of adenosine 3′∶5′-cyclic monophosphate in the germination of blastospores of Candida albicans. J Gen Microbiol 1981; 123: 233–240.Google Scholar
  16. 16.
    Egidy GA, Paveto MC, Passeron S, Galvagno MA. Relationship between cyclic adenosine 3′∶5′-monophosphate and germination in Candida albicans. Exp Mycol 1989; 13: 428–432.Google Scholar
  17. 17.
    Sabie FT, Gadd GM. Involvement of a Ca2+-calmodulin interaction in the yeast-mycelium (Y-M) transition of Candida albicans. Mycopathol 1989; 108: 46–54.Google Scholar
  18. 18.
    Jones BE, Bu‘Lock JD. The effect of N6O2-dibutyryl adenosine-3′∶′-cyclic monophosphate on morphogenesis in Mucorales. J Gen Microbiol 1977; 103: 29–36.Google Scholar
  19. 19.
    Dewerchin MA, Van Laere AJ. Effect of culture conditions on mycelial and yeast-like growth of Ceratocystis multiannulata. Trans Br Mycol Soc 1985; 85: 167–170.Google Scholar
  20. 20.
    Paveto C, Epstein A, Passeron S. Studies on cyclic adenosine 3′∶5′-monophosphate levels, adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii. Arch Biochem Biophys 1975; 169: 449–457.Google Scholar
  21. 21.
    Orlowski M. Changing pattern of cyclic AMP-binding proteins during germination of Mucor racemosus sporangiospores. Biochem J 1979; 182: 547–554.Google Scholar
  22. 22.
    Paris S, Duran S. Cyclic adenosine 3′∶5′ monophosphate (cAMP) and dimorphism in the pathogenic fungus Paracoccidioides brasiliensis. Mycopathol 1985; 92: 115–120.Google Scholar
  23. 23.
    Rodriguez-Del Valle N, Debs-Elias N, Alsina A. Effects of caffeine, cyclic 3′∶5′ adenosine monophosphate and cyclic 3′∶5′ guanosine monophosphate in the development of the mycelial form of Sporothrix schenckii. Mycopathol 1984; 86: 29–33.Google Scholar
  24. 24.
    Hardcastle RV, Szaniszlo PJ. Characterisation of dimorphism in Cladosporium werneckii. J Bacteriol 1974; 119: 294–302.Google Scholar
  25. 25.
    Gunasekaran M, Hughes WT, Maguire WJ. Cyclic 3′∶5′ nucleotide phosphodiesterase of Candida albicans. Microbios Lett 1976; 3: 47–53.Google Scholar
  26. 26.
    Maresca B, Medoff GS, Sclessinger D, Kobayashi GS, Medoff J. Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature 1977; 266: 447–448.Google Scholar
  27. 27.
    Paris S, Garrison RG. Cyclic adenosine 3′∶5′ monophosphate (cAMP) as a factor in phase morphogenesis of Blastomyces dermatitidis. Mykosen 1984; 27: 340–345.Google Scholar
  28. 28.
    Orlowski M. Cyclic adenosine 3′∶5′-monophosphate and germination of sporangiospores from the fungus Mucor. Arch Microbiol 1980; 126: 133–140.Google Scholar
  29. 29.
    Bourret JA, Smith CM. Cyclic AMP regulation of glucose transport in germinating Pilobolus longipes spores. Arch Microbiol. 1987; 148: 29–33.Google Scholar
  30. 30.
    Paranjape V, Roy BP, Datta A. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans. J Gen Microbiol 1990; 136: 2149–2154.Google Scholar
  31. 31.
    Cheung FW, Bradham LS, Lynch TJ, Lin YM, Tallant, EA. Protein activator of cyclic 3′∶5′-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Comm 1975; 66: 1055–1062.Google Scholar
  32. 32.
    Munoz A, Lavandero S, Donoso E, Puente J, Sapag-Hagar M. A role for adrenaline and calmodulin in modulating cyclic AMP levels during the lactogenic cycle. FEBS Lett 1985; 187: 173–176.Google Scholar
  33. 33.
    Stewart E, Gow NAR, Bowen DV. Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 1988; 134: 1079–1087.Google Scholar
  34. 34.
    Busa, WB, Nuccitelli, R. Metabolic regulation via intra-cellular pH. Am J Physiol 1984; 246: R409-R438.Google Scholar
  35. 35.
    Caspani G, Tortora P, Hazonet G, Guerritore A. Glucose-stimulated cAMP increase may be mediated by intra-cellular acidification in Saccaromyces cerevisiae. FEBS Lett 1985; 186: 75–79.Google Scholar
  36. 36.
    Trevillyan JM, Pall ML. Control of cyclic adenosine 3′∶5′-monophosphate levels by depolarizing agents in fungi. J Bacteriol 1979; 138: 397–403.Google Scholar
  37. 37.
    Prasad R. Nutrient transport in Candida albicans, a pathogenic yeast. Yeast 1987; 3: 209–221.Google Scholar
  38. 38.
    Jones RP, Gadd GM. Ionic nutrition of yeast — physiological mechanisms involved and applications for biotechnology. Enzyme Microb Technol 1990; 12: 402–418.Google Scholar
  39. 39.
    Brunton, AH, Gadd, GM. Evidence for an inositol lipid signal pathway in the yeast-mycelium transition of Ophiostoma ulmi, the Dutch elm disease fungus. Mycol Res 1991; 95: 484–491.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • F. T. Sabie
    • 1
  • G. M. Gadd
    • 1
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeScotland, UK

Personalised recommendations