Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Nitrogen metabolite repression of arginase, ornithine transaminase and allantoinase in a conditional ethionine-resistant mutant of Saccharomyces cerevisiae with low activity of catabolic NAD-specific glutamate dehydrogenase

  • 23 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

References

  1. Béchet, J., Grenson, M. and Wiame, J. M. 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae.— Eur. J. of Biochem. 12: 31–39.

  2. Bourgeois, C., 1969. Influence de la lysine sur la croissance de Saccharomyces cerevisiae.— Bull. Soc. Chim. Biol. 51: 935–949.

  3. Cherest, H., Surdin-Kerjan, Y., Exinger, F. and Lacroute, F., 1978. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: Evidence for the existence of two methionine adenosyl transferase.— Mol. Gen. Genet. 163: 153–167.

  4. Cooper, T. G. and Lawther, R. P. 1973. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway.— Proc. Nat. Acad. Sci. USA 70: 2340–2344.

  5. Dubois, E. and Grenson, M. 1974. Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae.— Biochem. Biophys. Res. Commun. 60: 150–157.

  6. Dubois, E., Grenson, M. and Wiame, J. M., 1973. Release of the ammonia effect on three catabolic enzymes by NADP-specific glutamate dehydrogenase-less mutations in Saccharomyces cerevisiae. — Biochem. Biophys. Res. Commun. 50: 962–972.

  7. Dubois, E., Grenson, M. and Wiame, J. M. 1974. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae.—Eur. J. Biochem. 48: 603–616.

  8. Dubois, E., Vissers, S., Grenson, M. and Wiame, J. M. 1977. Glutamine and ammonia in nitrogen catabolite repression of Saccharomyces cerevisiae.— Biochem. Biophys. Res. Commun. 75: 233–239.

  9. Dubois, E. and Wiame, J. M. 1976. Non specific induction of arginase in Saccharomyces cerevisiae. — Biochimie 58: 207–211.

  10. Gits, J. J. and Grenson, M. 1967. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. III. Evidence for a specific methionine-transporting system.— Biochim. Biophys. Acta 135: 507–516.

  11. Grenson, M. and Hennaut, C. 1971. Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae.— J. of Bacteriol. 105: 477–482.

  12. Grenson, M. and Hou, C. 1972. Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae. — Biochem. Biophys. Res. Commun. 48: 749–756.

  13. Grenson, M., Hou, C. and Crabeel, M. 1970. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. J. Bacteriol. 103: 770–777.

  14. Johnston, J. R. and Mortimer, R. K. 1959. Use of snail digestive juice in isolation of yeast spore tetrads.— J. Bacteriol. 78: 292.

  15. McClary, D. O., Nulty, W. T. and Miller, G. R. 1959. Effect of potassium versus sodium in the sporulation of Saccharomyces cerevisiae.— J. Bacteriol. 78: 362–368.

  16. Middelhoven, W. J. 1964. The pathway of arginine breakdown in Saccharomyces cerevisiae.—Biochim. Biophys. Acta 93: 650–652.

  17. Middelhoven, W. J. 1977. Isolation and characterization of methylammonium-resistant mutants of Saccharomyces cerevisiae with relieved nitrogen metabolite repression of allantoinase, arginase and ornithine transaminase synthesis.— J. Gen. Microbiol. 100: 257–269.

  18. Middelhoven, W. J., Anderegg, M. J. P. T., Meijs, A. W. H. M. and van Egmond, H. P. 1976. The substrate constant for the ammonium ion of growing Saccharomyces cerevisiae.— Antonie van Leeuwenhoek 42: 293–297.

  19. Middelhoven, W. J. and Arkesteyn, G. J. M. W. 1981. Induction and derepression of arginase and ornithine transaminase in different strains of Saccharomyces cerevisiae.— Antonie van Leeuwenhoek 47: 121–131.

  20. Middelhoven, W. J., van Eijk, J., van Renesse, R. and Blijham, J. M. 1978. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.— Antonie van Leeuwenhoek 44: 311–320.

  21. Middelhoven, W. J. and Hoogkamer-te Niet, M. C. 1981. Repression of catabolic NAD-specific glutamate dehydrogenase of Saccharomyces cerevisiae by arginine, allantoin and urea.— FEMS Microbiol. Lett. 10: 307–311.

  22. Roon, R. J. and Even, H. L. 1973. Regulation of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae.— J. Bacteriol. 116: 367–372.

  23. Sumrada, R. and Cooper, T. G. 1978. Basic amino acid inhibition of cell division and macromolecular synthesis in Saccharomyces cerevisiae.— J. Gen. Microbiol. 108: 45–56.

  24. Surdin, Y., Sly, W., Sire, J., Bordes, A. M. and de Robichon-Szulmajster, H. 1965. Propriétés et contrôle génétique du systéme d'accumulation des acides aminés chez Saccharomyces cerevisiae. — Biochim. Biophys. Acta 107: 546–566.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Middelhoven, W.J., Hoogkamer-te Niet, M.C. Nitrogen metabolite repression of arginase, ornithine transaminase and allantoinase in a conditional ethionine-resistant mutant of Saccharomyces cerevisiae with low activity of catabolic NAD-specific glutamate dehydrogenase. Antonie van Leeuwenhoek 48, 417–432 (1982). https://doi.org/10.1007/BF00448414

Download citation

Keywords

  • Nitrogen
  • Glutamate
  • Saccharomyces Cerevisiae
  • Ornithine
  • Arginase