Current Genetics

, Volume 10, Issue 7, pp 495–501 | Cite as

A new negative control gene for amino acid biosynthesis in Saccharomyces cerevisiae

  • Rachel C. Skvirsky
  • Miriam L. Greenberg
  • Paul Louis Myers
  • Helen Greer
Article

Summary

Enzyme levels in multiple amino acid biosynthetic pathways in yeast are coregulated. This control is effected largely at the transcriptional level by a number. of regulatory genes. We report the isolation and characterization of a new negative regulatory gene, GCD4, for this general control system. GCD4 mutations are recessive and define a single Mendelian gene on chromosome 111. A gcd4 mutation results in resistance to different amino acid analogs and elevated, but fully inducible, mRNA levels of genes under general control. Epistasis analysis indicates that GCD4 acts more directly than the positive regulators GCN1, GCN2, GCN3 and GCN5, but less directly than GCN4, on the transcription of the amino acid biosynthetic genes. These data imply that GCD4 is a negative regulator of the positive effector, GCN4. Although GCD4 occupies the same position relative to the GCN genes as other GCD genes, it produces a unique phenotype. These results illustrate the diversity of function of negative regulators in general control.

Key words

Gene expression Transcriptional regulation Yeast general control GCD genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Church G, Gilbert W (1984) Proc Natl Acad Sci USA 81:1991–1995Google Scholar
  2. Clarke L, Carbon J (1978) J Mol Biol 120:517–532Google Scholar
  3. Delforge J, Messenguy F, Wiame JM (1975) Eur J Biochem 57: 231–239Google Scholar
  4. Donahue T, Daves R, Lucchini R, Fink G (1983) Cell 32:89–98Google Scholar
  5. Greer H (1981) Mechanisms of yeast genetics. In: Holaender A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, pp 217–242Google Scholar
  6. Greer H, Penn M, Hauge B, Galgoci B (1982) Control of amino acid biosynthesis in yeast. In: Esposito M (ed) Recent advances in yeast molecular biology: recombinant DNA. University of California Press, Berkeley, pp 122–142Google Scholar
  7. Hinnebusch A, Fink G (1983a) J Biol Chem 258:5238–5247Google Scholar
  8. Hinnebusch A, Fink G (1983b) Proc Natl Acad Sci USA 80: 5374–5378Google Scholar
  9. Hsu Y-P, Kohlhaw G, Niederberger P (1982) J Bacteriol 150: 969–972Google Scholar
  10. Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  11. Messenguy F (1979) Mol Gen Genet 169:85–95Google Scholar
  12. Miozzari G, Niederberger P, Hutter R (1978) J Bacteriol 134: 48–59Google Scholar
  13. Mortimer R, Schild D (1980) Microbiol Rev 44:519–521Google Scholar
  14. Niederberger P, Miozzari G, Hutter R (1981) Mol Cell Biol 1: 584–593Google Scholar
  15. Penn M, Galgoci B, Greer H (1983) Proc Natl Acad Sci USA 80: 2704–2708Google Scholar
  16. Penn M, Thireos G, Greer H (1984) Mol Cell Biol 4:520–528Google Scholar
  17. Perkins D (1949) Genetics 34:607–618Google Scholar
  18. Schurch A, Miozzari J, Hutter R (1974) J Bacteriol 117:1131–1140Google Scholar
  19. Sherman F, Fink G, Lawrence C (1979) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  20. Silverman S, Rose M, Botstein D, Fink G (1982) Mol Cell Biol 2:1212–1219Google Scholar
  21. Sripati E, Warner J (1978) Isolation, characterization and translation of mRNA in yeast. In: Prescott D (ed) Methods in cell biology, vol 20. Academic Press, New York, pp 61–81Google Scholar
  22. Struhl K, Davis R (1981) J Mol Biol 152:535–552Google Scholar
  23. Thireos G, Penn M, Greer H (1984) Proc Natl Acad Sci USA 81: 5096–5100Google Scholar
  24. Wolfner M, Yep D, Messenguy F, Fink G (1975) J Mol Biol 96: 273–290Google Scholar
  25. Zalkin H, Yanofsky C (1982) J Biol Chem 257:1491–1500Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Rachel C. Skvirsky
    • 1
  • Miriam L. Greenberg
    • 1
  • Paul Louis Myers
    • 1
  • Helen Greer
    • 1
  1. 1.Department of Cellular and Developmental BiologyHarvard UniversityCambridgeUSA

Personalised recommendations