Advertisement

Archives of Microbiology

, Volume 142, Issue 2, pp 148–151 | Cite as

Trace metal and vitamin requirements of Methanococcoides methylutens grown with trimethylamine

  • Kevin R. Sowers
  • James G. Ferry
Original Papers

Abstract

Trace organic nutrient and metal requirements for the growth of Methanococcoides methylutens strain TMA-10 were determined in defined medium that contained trimethylamine as the substrate. Biotin was the only organic supplement required in place of yeast extract, Trypticase or a mixture of 8 B-vitamins. Fe an Ni were required for growth and low concentrations of Fe2+ (<5 μM) and Ni2+ (<0.25 μM) provided limited growth. In the absence of added Co the growth rate was reduced by 94% and growth was limited at concentrations below 0.1 μM. Stimulation of growth by Se, Mo, B, Al, Zn, Mn or Cu could not be demonstrated.

Key words

Cobalt Iron Nickel Biotin Methanococcoides methylutens Trace elements Vitamins Methanogens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791Google Scholar
  2. Berg L van den, Lamb KA, Murray WD, Armstrong DW (1980) Effects of sulphate, iron, and hydrogen on the microbiological conversion of acetic acid to methane. J Appl Bacteriol 48:437–447Google Scholar
  3. Bryant MP, Tzeng SF, Robinson IM, Joyner AE, Jr (1971) Nutrient requirements of methanogenic bacteria. In: Pohland FG (ed) Advan Chem Ser 105. American Chemical Society, Washington, pp 23–40Google Scholar
  4. Davey EW, Gentile JH, Erickson SJ, Betzer P (1970) Removal of trace metals from marine culture media. Limnol Oceanog 15:486–488Google Scholar
  5. Dickert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464Google Scholar
  6. Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure of coenzyme F420 from Methanobacterium sp. M.o.H. Biochem 17:4583–4593Google Scholar
  7. Graf E-G, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169Google Scholar
  8. Hatchikian EC, Bruschi M, Forget N, Scandellari M (1982) Electron-transport components from methanogenic bacteria: the ferredoxin from Methanosarcina barkeri (strain fusaro). Biochem Biophys Res Commun 109:1316–1323Google Scholar
  9. Hoban DJ, van der Berg L (1979) Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. J Appl Bacteriol 47:153–159Google Scholar
  10. Jones JB, Stadtman TC (1977) Methanococcus vanniellii: culture and effects of selenium and tungsten on growth. J Bacteriol 130:1404–1406Google Scholar
  11. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261Google Scholar
  12. Jones WJ, Paynter MJB, Gupta R (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97Google Scholar
  13. Jüssofie A (1984) Cytochromuntersuchungen an methanogenen und acetogenen Bakterien. Disertation Univ. GöttingenGoogle Scholar
  14. Keltjens JT, Caerteling CG, Kooten AM van, Dijk HF van, Vogels GD (1983) Chromophoric derivatives of coenzyme M F430, a proposed coenzyme of methanogenesis in Methanobacterium thermoautotrophicum. Arch Biochem Biophys 223:235–253Google Scholar
  15. Kirby TW, Lancaster JR, Jr, Fridovich I (1981) Isolation and characterization or the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148Google Scholar
  16. König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig 3:478–490Google Scholar
  17. Krzycki J, Zeikus JG (1980) Quantificatin of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245Google Scholar
  18. Krzycki JA, Zeikus JG (1984) Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol 158:231–237Google Scholar
  19. Kühn w, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem 135:89–94Google Scholar
  20. Kühn W, Fiebig K, Hippe H, Mah RA, Huser BA, Gottschalk G (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20:407–410Google Scholar
  21. Lancaster JR, Jr (1980) Soluble and membrane-bound paramagnetic centers in Methanobacterium bryantii. FEBS Lett 115:285–288Google Scholar
  22. Lancaster JR, Jr (1981) Membrane-bound flavin adenine dinucleotide in Methanobacterium bryantii. Biochem Biophys Res Commun 100:240–246Google Scholar
  23. Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and nonmethanogenic bacteria. Appl Environ Microbiol 45:800–803Google Scholar
  24. Mah RA, Smith MR (1981) The methanogenic bacteria. In: Starr M, Steys H, Trüger H, Balows A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 948–977Google Scholar
  25. McBride BC, Wolfe RS (1971) A new coenzyme of methyl-transfer, coenzyme M. Biochem 10:2317–2324Google Scholar
  26. Meijden P van der, Heythuysen HJ, Pouwels A, Houwen F, Drift C van der, Vogels GD (1983) Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol 134:238–242Google Scholar
  27. Murray WD, Berg L van den (1981) Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl Environ Microbiol 42:502–505Google Scholar
  28. Patel GB, Roth LA, Berg L van den, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22:1404–1410Google Scholar
  29. Patel GB, Khan AW, Roth LA (1978) Optimum levels of sulphate and iron for the cultivation of pure cultures of methanogens in synthetic media. J Appl Bacteriol 45:347–356Google Scholar
  30. Riley JP, Taylor D (1968) Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry. Anal Chim Acta 40:479–485Google Scholar
  31. Scherer P, Sahm H (1981) Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65Google Scholar
  32. Scherer P, Sauer C (1982) State of iron in the archaebacterium Methanosarcina barkeri grown on different carbon sources as studied by Mössbauer spectroscopy. Z Naturforschg Sect C 37:877–880Google Scholar
  33. Scherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Element Res 5:149–163Google Scholar
  34. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107Google Scholar
  35. Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45:684–690Google Scholar
  36. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47: 971–978Google Scholar
  37. Taylor GT, Pirt SJ (1977) Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch Microbiol 113:17–22Google Scholar
  38. Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863Google Scholar
  39. Wolin EA, Wolin MJ, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863Google Scholar
  40. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886Google Scholar
  41. Zhilina TN (1983) A new obligate halophilic methane-producing bacterium. Mikrobiologiya (U.S.S.R.) 52:375–382Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Kevin R. Sowers
    • 1
  • James G. Ferry
    • 1
  1. 1.Department of Anaerobic MicrobiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations