Archives of Microbiology

, Volume 125, Issue 3, pp 259–269 | Cite as

The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases

  • Wolfram Zillig
  • Karl O. Stetter
  • Simon Wunderl
  • Wolfgang Schulz
  • Harro Priess
  • Ingrid Scholz


The similarity of the morphology and of DNA composition, the homology of the component patterns of DNA-dependent RNA polymerases and their immunochemical crossreactivity support the conclusion that several extreme thermoacidophiles are related to each other. We name two new species of the genus Sulfolobus. The first, Sulfolobus solfataricus (DSM 1616 and DSM 1617) has the same GC content in its DNA and the same general properties as S. acidocaldarius, but differs significantly from the latter species in the molecular weights of the 11 components of its RNA polymerase and in the salt requirements of this enzyme. The second, Sulfolobus brierleyi, DSM 1651, differs from S. acidocaldarius in several respects. The cells show much less stability at neutral pH. The GC content is significantly lower. The RNA polymerase lacks two components present in the enzymes from the other species. The residual 9 components show larger size differences from the homologous subunits of the S. acidocaldarius enzyme.

Like the enzyme from S. solfataricus, the polymerase from S. brierleyi yields an incomplete immunochemical crossreaction with an antibody against the RNA polymerase from S. acidocaldarius.

The isolates DSM 1616 and DSM 1617 of Sulfolobus solfataricus are probably identical with or similar to the “Caldariella” strains MT 3 and MT 4, isolated by de Rosa et al. (1975).

Like all other known archaebacterial RNA polymerases the enzymes from these species are insensitive to rifampicin and streptolydigin.

Key words

Archaebacteria Caldariella DNA-dependent RNA polymerase Sulfolobus Taxonomy Transcription 



Guanine + Cytosine


High Performance Liquid Chromatography


Similarity coefficient between two different RNAs as defined by Fox et al. (1977)


Sodium dodecylsulfate (Sodium laurylsulfate), SSC 0.15 M NaCl, 0.015 M Na Citrate pH 7.4


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohlool, B. B., Brock, T. D.: Population ecology of Sulfolobus acidocaldarius. II. Immunoecological studies. Arch. Microbiol. 97, 181–194 (1974)Google Scholar
  2. Brierley, C. L., Brierley, J. A.: A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol. 19, 183–188 (1973)Google Scholar
  3. Brock, T. D., Brock, K. M., Belley, R. T., Weiss, R. L.: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972)Google Scholar
  4. Brock, T. D.: Thermophilic microorganisms and life at high temperatures. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  5. Fox, G. E., Pechmann, K. R., Woese, C. R.: Comparative cataloging of 16S ribosomal ribonucleic acid: Molecular approach to procaryotic systems. Int. J. Syst. Bacteriol. 27, 44–57 (1977)Google Scholar
  6. Linn, T. G., Greenleaf, A. L., Shorenstein, R. G., Losick, R.: Loss of the sigma activity of RNA polymerase of Bacillus subtilis during sporulation. Proc. Nat. Acad. Sci. USA 70, 1865–1869 (1973)Google Scholar
  7. Lunan, K. D., Sinsheimer, R. L.: A study of the nucleic acid of bacteriophage T7. Virology 2, 455–462 (1956)Google Scholar
  8. Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109–118 (1962)Google Scholar
  9. Moore, R. L., McCarthy, B. L.: Base sequence homology and renaturation studies of the DNA of extremely halophilic bacteria. J. Bacteriol. 99, 255–262 (1969)Google Scholar
  10. Ouchterlony, Ö: Diffusion-in-gel methods for immunological analysis II. In: Progress in Allergy VI. (P. Kallos and B. H. Waksman, eds.), pp. 30–154. Basel: Karger 1962Google Scholar
  11. De Rosa, M., Gambacorta, A., Bu'Lock, J. D.: Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J. Gen. Microbiol. 86, 156–164 (1975)Google Scholar
  12. Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4, 430–443 (1962)Google Scholar
  13. Stetter, K. O.: Transcription in Lactobacillaceae: DNA-dependent RNA polymerase from Lactobacillus casei. Isolation of transcription factory y. Hoppe-Seyler's Z. phys. Chem. 358, 1093–1104 (1977)Google Scholar
  14. Sturm, S., Schönfeld, U., Zillig, W., Janekovié, D., Stetter, K. O.: Structure and function of the DNA-dependent RNA polymerase of the Archaebacterium Thermoplasma acidophilum. Zbl. Bakt. Hyg., I. Abt. Orig. C (in press, 1980)Google Scholar
  15. Volkin, E., Astrachan, L., Countryman, J. L.: Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology 6, 555–595 (1978)Google Scholar
  16. Woese, C. R., Magrum, L. J., Fox, G. E.: Archaebacteria. J. Mol. Evol. 11, 245–252 (1978)Google Scholar
  17. Zillig, W., Stetter, K. O., Janeković, D.: DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur. J. Biochem. 96, 597–604 (1979)Google Scholar
  18. Zillig, W., Stetter, K. O., Tobien, M.: DNA-dependent RNA polymerase from Halobacterium halobium. Eur. J. Biochem. 91, 193–199 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Wolfram Zillig
    • 1
  • Karl O. Stetter
    • 2
  • Simon Wunderl
    • 1
  • Wolfgang Schulz
    • 1
  • Harro Priess
    • 1
  • Ingrid Scholz
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedGermany
  2. 2.Institut für Botanik der UniversitätMünchenGermany

Personalised recommendations