Archives of Microbiology

, Volume 114, Issue 3, pp 273–279 | Cite as

Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath

  • Howard Dalton


Soluble extracts of Methylococcus capsulatus (Bath) that readily oxidise methane to methanol will also oxidise ammonia to nitrite via hydroxylamine. The ammonia oxidising activity requires O2, NADH and is readily inhibited by methane and specific inhibitors of methane mono-oxygenase activity. Hydroxylamine is oxidised to nitrite via an enzyme system that uses phenazine methosulphate (PMS) as an electron acceptor. The estimated Kmvalue for the ammonia hydroxylase activity was 87 mM but the kinetics of the oxidation were complex and may involve negative cooperativity.

Key words

Ammonia oxidation Methane mono-oxygenase Hydroxylamine oxidation Methylococcus capsulatus 



Phenazine methosulphate


nicotinamide adenine dinucleotide, reduced form


Michaelis constant






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleem, M. I. H.: Generation of reducing power in chemosynthesis. II. Energy linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea. Biochim. biophys. Acta. 113, 216–224 (1966)Google Scholar
  2. Bardsley, W. G.: The 3:3 function in enzyme kinetics. Possible shapes of v/s and (1/v)/(1/s) plots for third degree steady-state rate equations. J. theor. Biol. 65, 281–316 (1977)Google Scholar
  3. Colby, J., Dalton, H.: Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157, 495–497 (1976)Google Scholar
  4. Colby, J., Dalton, H., Whittenbury, R.: An improved assay for bacterial methane mono-oxygenase: some properties of the enzyme from Methylomonas methanica. Biochem. J. 151, 459–462 (1975)Google Scholar
  5. Colby, J., Stirling, D. I., Dalton, H.: The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers, alicyclic, aromatic and heterocyclic compounds. Biochem. J. (in press, 1977)Google Scholar
  6. Dalton, H., Whittenbury, R.: The acetylene reduction technique as an assay for the nitrogenase activity in the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol 109, 147–151 (1976)Google Scholar
  7. Ferenci, T., Strøm, T., Quayle, J. R.: Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. Gen. Microbiol. 91, 79–91 (1975)Google Scholar
  8. Hirsch, P., Overrein, L., Alexander, M.: Formation of nitrite and nitrate by Acinomycetes and fungi. J. Bact. 82, 442–448 (1961)Google Scholar
  9. Hofman, T., Lees, H.: The biochemistry of the nitrifying organisms. 4. The respiration and intermediary metabolism of Nitrosomonas. Biochem. J. 54, 579–583 (1953)Google Scholar
  10. Hooper, A. B., Nason, A.: Characterisation of hydroxylamine-cytochrome c reductase from the chemo-autotrophs Nitrosomonas europaea and Nitrosocystis oceanus. J. biol. Chem. 240, 4044–4057 (1965)Google Scholar
  11. Hooper, A. B., Terry, K. R.: Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bact. 115, 480–485 (1973)Google Scholar
  12. Hubley, J. H., Thomson, A. W., Wilkinson, J. F.: Specific inhibitors of methane oxidation in Methylosinus trichosporium. Arch. Microbiol. 102, 119–202 (1975)Google Scholar
  13. Hutton, W. E., Zobell, C. E.: Production of nitrite from ammonia by methane oxidising bacteria. J. Bact. 65, 216–219 (1953)Google Scholar
  14. Lees, H.: The biochemistry of the nitrifying organisms. I. The ammonia-oxidising systems of Nitrosomonas. Biochem. J. 52, 134–142 (1952)Google Scholar
  15. Levitski, A., Koshland, D. E., Jr.: Negative co-operativity in regulatory enzymes. Proc. Nat. Acad. Sci. U.S.A. 62, 1121–1128 (1969)Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  17. Magee, W. E., Burris, R. H.: Fixation of N2 and utilisation of combined nitrogen by Nostoc muscorum. Am. J. Bot. 41, 777–782 (1954)Google Scholar
  18. Nicholas, D. J. D., Nason, A.: Determination of nitrate and nitrite. In: Methods in enzymology, Vol. III (S. P. Colowick, N. O. Kaplan, eds.), pp. 981–984. New York: Academic Press 1957Google Scholar
  19. Nicholas, D. J. D., Jones, O. T. G.: Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea. Nature 185, 512–514 (1960)Google Scholar
  20. Patel, R., Hou, C. T., Felix, A.: Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. J. Bact. 126, 1017–1019 (1976)Google Scholar
  21. Rees, M. K.: Studies of the hydroxylamine metabolism of Nitrosomonas europaea. 1. Purification of hydroxylamine oxidase. Biochemistry 7, 353–366 (1968)Google Scholar
  22. Rees, M. K., Nason, A.: Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochim. biophys. Acta. 113, 398–402 (1966)Google Scholar
  23. Ribbons, D. W.: Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: Distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J. Bact. 122, 1351–1362 (1975)Google Scholar
  24. Stirling, D. I., Dalton, H.: Cometabolism by an obligate methanotrophic bacterium, Methylococcus capsulatus. Proc. Soc. Gen. Microbiol. 4, 31 (1976)Google Scholar
  25. Stirling, D. I., Dalton, H.: The effect of metal-binding agents and other compounds on methane oxidation by two strains of Methylococcus capsulatus. Arch. Microbiol. 114, 71–76 (1977)Google Scholar
  26. Suzuki, I., Dular, U., Kwok, S. C.: Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bact. 120, 556–558 (1974)Google Scholar
  27. Suzuki, I., Kwok, S. C.: Cell-free ammonia oxidation by Nitrosomonas europaea extracts: effects of polyamines, Mg2+ and albumin. Biochem. Biophys. Res. Commun. 39, 950–955 (1970)Google Scholar
  28. Suzuki, I., Kwok, S. C., Dular, U.: Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett. 73, 117–120 (1976)Google Scholar
  29. Tonge, G. M., Harrison, D. E. F., Higgins, I. J.: Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem. J. 161, 333–344 (1977)Google Scholar
  30. Verstraete, W., Alexander, M.: Heterotrophic nitrification by Arthrobacter sp. J. Bact. 110, 955–961 (1972)Google Scholar
  31. Watson, S. W.: Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus spn. Limnol. Oceanogr. (suppl.) 10, 274–289 (1965)Google Scholar
  32. Watson, S. W., Asbell, M. A., Valois, F. W.: Ammonia oxidation by cell-free extracts of Nitrosocystis oceanus. Biochem. Biophys. Res. Commun. 38, 1113–1119 (1970)Google Scholar
  33. Whittenbury, R., Phillips, K. C., Wilkinson, J. F.: Enrichment, isolation and some properties of methane-utilising bacteria. J. gen. Microbiol. 61, 205–218 (1970)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Howard Dalton
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryEngland

Personalised recommendations