Advertisement

Archives of Microbiology

, Volume 114, Issue 3, pp 225–229 | Cite as

Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica

  • Masayuki Ohmori
  • Kazuko Ohmori
  • Heinrich Strotmann
Article

Abstract

Ammonia at concentrations above 1×10-5 M inhibits uptake of nitrate in the nitrogen-fixing blue-green alga, Anabaena cylindrica. This inhibition takes place both in the light and in the dark. The rate of nitrate uptake is stimulated by light. Addition of relatively high concentrations of nitrate (1–10 mM) reversibly inhibits ammonia uptake. FCCP, an uncoupler of phosphorylation, inhibits both nitrate and ammonia uptake. Ammonia may inhibit nitrate uptake by reducing the supply of energy (ATP) for active nitrate transport.

Key words

Blue-green algae Nitrate transport Nitrate reduction 

Abbreviations

FCCP

carbonyl cyanide p-trifluoromethoxy-phenylhydrazone

CCCP

carbonyl cyanide m-chlorophenyl-hydrazone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beevers, L., Hagemann, R. H.: Nitrate reduction in higher plants. Ann. Rev. Plant Physiol. 20, 495–522 (1969)Google Scholar
  2. Chaparro, A., Maldonado, J. M., Diez, J., Relimpio, A. M., Losada, M.: Nitrate reductase inactivation and reducing power and energy charge in Chlorella cells. Plant Sci. Letters 6, 335–342 (1976)Google Scholar
  3. Dahl, J. L., Hokin, L. E.: The sodium-potassium adenosine triphosphatase. Ann. Rev. Biochem. 43, 327–356 (1974)Google Scholar
  4. Dharmawardene, M. W. N., Haystead, A., Stewart, W. D. P.: Glutamine synthetase of the nitrogen-fixing alga Anabaena cylindrica. Arch. Mikrobiol. 90, 281–295 (1973)Google Scholar
  5. Good, N. E.: Activation of the Hill reaction by amines. Biochim. biophys. Acta (Amst.) 40, 502–517 (1960)Google Scholar
  6. Hattori, A.: Light-induced reduction of nitrate, nitrite and hydroxylamine in a blue-green alga, Anabaena cylindrica. Plant Cell Physiol. (Tokyo) 3, 355–369 (1962)Google Scholar
  7. Hattori, A., Myers, J.: Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica. II. Reduction of nitrate to nitrite. Plant Cell Physiol. (Tokyo) 8, 327–337 (1967)Google Scholar
  8. Heimer, Y. M., Filner, P.: Regulation of the nitrate assimilation pathway in cultured tobacco cells. III. The nitrate uptake system. Biochim. biophys. Acta (Amst.) 230, 362–372 (1971)Google Scholar
  9. Herrera, J., Paneque, A., Maldonado, J. M., Barea, J. L., Losada, M.: Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardi. Biochem. biophys. Res. Commun. 48, 996–1003 (1972)Google Scholar
  10. Hewitt, E. J.: Assimilatory nitrate-nitrite reduction. Ann. Rev. Plant Physiol. 26, 73–100 (1975)Google Scholar
  11. Kratz, W. A., Myers, J.: Nutrition and growth of several blue-green algae. Am. J. Bot. 42, 282–287 (1955)Google Scholar
  12. Lawrie, A. C., Codd, G. A., Stewart, W. D. P.: The incorporation of nitrogen in products of recent photosynthesis in Anabaena cylindrica Lemm. Arch. Microbiol. 107, 15–24 (1976)Google Scholar
  13. Lorimer, G. H., Gewitz, H.-S., Völker, W., Solomonson, L. P., Vennesland, B.: The presence of bound cyanide in the naturally inactivated form of nitrate reductase of Chlorella vulgaris. J. biol. Chem. 249, 6074–6079 (1974)Google Scholar
  14. Losada, M., Herrera, J., Maldonado, J. M., Paneque, A.: Mechanism of nitrate reductase reversible inactivation by ammonia in Chlamydomonas. Plant Sci. Letters 1, 31–37 (1973)Google Scholar
  15. Losada, M., Paneque, A., Aparicio, P. J., Vega, J. M., Cárdenas, J., Herrera, J.: Inactivation and repression by ammonium of the nitrate reducing system in Chlorella. Biochem. biophys. Res. Commun. 38, 1009–1015 (1970)Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  17. Maldonado, J. M., Herrera, J., Paneque, A., Losada, M.: Reversible inactivation by NADH and ADP of Chlorella fusca nitrate reductase. Biochem. biophys. Res. Commun. 51, 27–33 (1973)Google Scholar
  18. Moreno, C. G., Aparicio, P. J., Palcián, E., Losada, M.: Interconversion of the active and inactive forms of Chlorella nitrate reductase. FEBS Letters 26, 11–14 (1972)Google Scholar
  19. Moreno, C. G., Palacián, E.: Nitrate reductase from Chlorella fusca. Reversible inactivation by thiols and by sulfite. Arch. Biochem. Biophys. 160, 269–273 (1974)Google Scholar
  20. Nicholas, D. J. D., Nason, A.: Determination of nitrate and nitrite. In: Methods in Enzymology, Vol. 3 (S. P. Colowick, N. O. Kaplan, eds.), pp. 981–984. New York, N.Y.: Academic Press 1957Google Scholar
  21. Ohmori, K., Hattori, A.: Induction of nitrate and nitrate reductases in Anabaena cylindrica. Plant Cell Physiol. (Tokyo) 11, 873–878 (1970)Google Scholar
  22. Ohmori, M., Hattori, A.: Effect of ammonia on nitrogen fixation by the blue-green alga Anabaena cylindrica. Plant Cell Physiol. (Tokyo) 15, 131–142 (1974)Google Scholar
  23. Payne, W. J.: Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37, 409–452 (1973)Google Scholar
  24. Rains, D. W.: Kinetics and energetics of light-enhanced potassium absorption by corn leaf tissue. Plant Physiol. 43, 394–400 (1968)Google Scholar
  25. Rigano, C.: Studies on nitrate reductase from Cyanidium caldarium. Arch. Mikrobiol. 76, 265–276 (1971)Google Scholar
  26. Rigano, C., Aliotta, G., Violante, U.: Reversible inactivation by ammonia of assimilatory nitrate reductase in Cyanidium caldarium. Arch. Microbiol. 99, 81–90 (1974)Google Scholar
  27. Rigano, C., Violante, U.: Effect of nitrate, ammonia and nitrogen starvation on the regulation of nitrate reductase in Cyanidium caldarium. Arch. Mikrobiol. 90, 27–33 (1973)Google Scholar
  28. Schloemer, R. H., Garrett, R. H.: Nitrate transport system in Neurospora crassa. J. Bacteriol. 118, 259–269 (1974)Google Scholar
  29. Simonis, W., Urbach, W.: Photophosphorylation in vivo. Ann. Rev. Plant Physiol. 24, 89–114 (1973)Google Scholar
  30. Solomonson, L. P.: Regulation of nitrate reductase activity by NADH and cyanide. Biochim. biophys. Acta (Amst.) 334, 297–308 (1974)Google Scholar
  31. Solomonson, L. P., Jetschmann, K., Vennesland, B.: Reversible inactivation of the nitrate reductase of Chlorella vulgaris Beijerinck. Biochim. biophys. Acta (Amst.) 309, 32–43 (1973)Google Scholar
  32. Solomonson, L. P., Vennesland, B.: Nitrate reductase and chlorete toxicity in Chlorella vulgaris Beijerinck. Plant Physiol. 50, 421–424 (1972)Google Scholar
  33. Solórzano, L.: Determination of ammonia in natural sea water by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969)Google Scholar
  34. Stevens, S. E., Jr., Van Baalen, C.: Control of nitrate reductase in a blue-green alga: The effects of inhibitors, blue light, and ammonia. Arch. Biochem. Biophys. 161, 146–152 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Masayuki Ohmori
    • 1
  • Kazuko Ohmori
    • 1
  • Heinrich Strotmann
    • 1
  1. 1.Abteilung für Biochemie der PflanzenBotanisches Institut der Tierärztlichen Hochschule HannoverHannoverGermany

Personalised recommendations