Archives of Microbiology

, Volume 149, Issue 6, pp 515–520 | Cite as

Base composition of DNA from symbiotic dinoflagellates: a tool for phylogenetic classification

  • Rudolf J. Blank
  • Volker A. R. Huss
  • Walter Kersten
Original Papers


DNA of eight endosymbiotic dinoflagellates (zooxanthellae) from seven different host species has been analyzed as to its thermal characteristics and base composition by means of spectrophotometry and high performance liquid chromatography. All algae under investigation contain both methylcytosine and hydroxymethyluracil in addition to the bases typical of nuclear DNA. As a result, melting temperatures are decreased, suggesting lower contents of guanine plus cytosine than actually present. True percentages of guanine plus cytosine plus methylcytosine range from about 43 to 54 mol%. They are unique for the symbionts from different hosts, indicating phylogenetic separation of the taxa comparised within the genus Symbiodinium.

Key words

Dinoflagellates DNA composition Hydroxymethyluracil Methylcytosine Speciation Symbiodinium Symbiosis Zooxanthellae 































guanine plus cytosine plus 5-methylcytosine


high performance liquid chromatography


temperature at the midpoint of hyperchromic shift


N-cetyl-N,N,N-trimethyl-ammonium bromide


ethylenediamine-tetraacetic acid, disodium salt




standard saline citrate (0.15 M NaCl+0.015 M trisodium citrate, pH 7.0)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beam CA, Himes M (1977) Sexual isolation and genetic diversification among some strains of Crypthecodinium cohnii-like dinoflagellates: evidence for speciation. J Protozool 24:532–539Google Scholar
  2. Beam CA, Himes M (1982) Distribution of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 29:8–15Google Scholar
  3. Beam CA, Himes M (1987) Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 34:204–217Google Scholar
  4. Blank RJ (1986) Unusual chloroplast structures in endosymbiotic dinoflagellates: a clue to evolutionary differentiation within the genus Symbiodinium (Dinophyceae). Pl Syst Evol 151:271–280Google Scholar
  5. Blank RJ (1987a) Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian stony coral Montipora verrucosa. Mar Biol 94:143–155Google Scholar
  6. Blank RJ (1987b) Presumed gametes of Symbiodinium: feintings by a fungal parasite? Endocyt Cell Res 4:297–304Google Scholar
  7. Blank RJ, Trench RK (1985a) Speciation and symbiotic dinoflagellates. Science 229:656–658Google Scholar
  8. Blank RJ, Trench RK (1985b) Symbiodinium microadriaticum: a single species? In: Gabrie C, Toffart JL, Salvat B (eds) Proceedings of the fifth International Coral Reef Congress, vol 6. Antenne du Museum National d'Histoire Naturelle et de l'Ecole Pratique des Hautes Etudes, Papeete, pp 113–117Google Scholar
  9. Blank RJ, Trench RK (1986) Nomenclature of endosymbiotic dinoflagellates. Taxon 35:286–294Google Scholar
  10. De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754Google Scholar
  11. Douglas AE, Huss VAR (1986) On the characteristics and taxonomic position of symbiotic Chlorella. Arch Microbiol 145:80–84Google Scholar
  12. Duclaux GN (1977) Recherches sur quelques associations symbiotiques d'algues et de métazoaires. Thèse de doctorat, Université de ParisGoogle Scholar
  13. Ebert P (1985) Einfluß von Polyaminen auf die DNA-Replikation und auf die Methylierung der DNA bei der induzierten Zelldifferenzierung. Diss, Univ Erlangen-NürnbergGoogle Scholar
  14. Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432Google Scholar
  15. Franker CK (1970) Some properties of DNA from zooxanthellae harboured by an anemone Anthopleura elegantissima. J Phycol 6:299–305Google Scholar
  16. Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool 9:45–52Google Scholar
  17. Hollande A, Carré D (1974) Les xanthelles des radiolaires sphaerocollides, des acanthaires et de Velella velella. Infrastructure —cytochemie — taxonomie. Protistologica 10:573–601Google Scholar
  18. Huss VAR, Dörr R, Grossmann U, Kessler E (1986) Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella. I. Chlorella sorokiniana. Arch Microbiol 145:329–333Google Scholar
  19. Kallen RG, Simon M, Marmur J (1969) The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyluracil. J Mol Biol 5:248–250Google Scholar
  20. Kerfin W, Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XI. DNA hybridization. Arch Microbiol 116:97–103Google Scholar
  21. Kuo KC, McCune RA, Gehrke CW (1980) Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucl Acids Res 8:4763–4776Google Scholar
  22. Loeblich AR (1984) Dinoflagellate evolution. In: Spector DL (ed) Dinoflagellates. Academic Press, Orlando San Diego New York London Toronto Montreal Sydney Tokyo, pp 481–522Google Scholar
  23. Loeblich AR, Sherley JL (1979) Observations on the theca of the motile phase of free-living and symbiotic Zooxanthella microadriatica (Freudenthal) comb. nov. J Mar Biol Ass UK 59:195–206Google Scholar
  24. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. Mol Biol 3:208–218Google Scholar
  25. Rae PMM (1976) Hydroxymethyluracil in eukaryote DNA: a natural base of the Pyrrophyta (dinoflagellates) Science 194:1062–1064Google Scholar
  26. Rae PMM, Steele RE (1978) Modified bases in the DNAs of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. BioSystems 10:37–53Google Scholar
  27. Spero HJ (1987) Symbiosis in the planktonic foraminifer Orbulina universa, and the isolation of its symbiotic dinoflagellate, Gymnodinium béii sp. nov. J Phycol 23:307–317Google Scholar
  28. Steele RE, Rae PMM (1980) Comparison of DNAs of Crypthecodinium cohnii-like dinoflagellates from widespread geographical locations. J Protozool 27:479–483Google Scholar
  29. Taylor DL (1969) Identity of zooxanthellae isolated from some Pacific Tridacnidae. J Phycol 5:336–340Google Scholar
  30. Taylor DL (1973) The cellular interactions of algal-invertebrate symbiosis. Adv Mar Biol 11:1–56Google Scholar
  31. Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WB (ed) Symbiosis in the sea. University of South Columbia Press, Columbia, pp 245–262Google Scholar
  32. Taylor DL (1984) Autotrophic eukaryotic marine symbionts. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 17. Springer, Berlin Heidelberg New York, pp 75–90Google Scholar
  33. Taylor FJR (1983) Possible free-living Symbiodinium microadriaticum (Dinophyceae) in tide pools in southern Thailand. In: Schent HEA, Schwemmler W (eds) Endocytobiology, vol 2. De Gruyter, Berlin New York, pp 1009–1014Google Scholar
  34. Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Rudolf J. Blank
    • 1
  • Volker A. R. Huss
    • 1
  • Walter Kersten
    • 2
  1. 1.Institut für Botanik und Pharmazeutische BiologieUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für Biochemie der Medizinischen FakultätUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations