Advertisement

Archiv für Mikrobiologie

, Volume 25, Issue 4, pp 392–428 | Cite as

The development of artificial media for marine algae

  • L. Provasoli
  • J. J. A. McLaughlin
  • M. R. Droop
Article

Keywords

Marine Alga Artificial Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, E. J.: On the culture of the plankton diatom Thalassiosira gravida Cleve, in artificial sea water. J. Mar. Biol. Assoc. U. Kingd. 10, 417–39 (1914).Google Scholar
  2. Allen, E. J., and E. W. Nelson: On the artificial culture of marine plankton organisms. J. Mar. Biol. Assoc. U. Kingd. 8, 421–74 (1910).Google Scholar
  3. Barker, H. A.: The culture and physiology of the marine dinoflagellates. Arch. Mikrobiol. 6, 157–81 (1935).Google Scholar
  4. Black, W. A. P., and R. L. Mitchell: Trace elements in the common brown algae and in sea water. J. Mar. Biol. Assoc. U. Kingd. 30, 575–84 (1952).Google Scholar
  5. Boyd, W. W., H. Carpelan and R. R. Whitney: Mimeographed Report on the University of California Salton Sea Research Program for the period Feb. 1, 1954 to May 20, 1954, Los Angeles 1954.Google Scholar
  6. Braarud, T.: Salinity as an ecological factor in marine phytoplankton. Plant. Physiol. 4, 28–34 (1951).Google Scholar
  7. Bruce, J. R., M. Knight and M. Parke: The rearing of oyster larvae on an algal diet. J. Mar. Biol. Assoc. U. Kingd. 24, 337–74 (1940).Google Scholar
  8. Butcher, R. W.: Contributions to our knowledge of the smaller marine algae. J. Mar. Biol. Assoc. U. Kingd. 31, 175–92 (1952).Google Scholar
  9. Chu, S. P.: Note on the technique of making bacteria-free cultures of marine diatoms. J. Mar. Biol. Assoc. U. Kingd. 26, 296–302 (1946a); The utilization of organic phosphorus by phytoplankton. J. Mar. Biol. Assoc. U. Kingd. 26, 285–95 (1946b).Google Scholar
  10. Cowperthwaite, J., M. M. Weber, L. Packer and S. H. Hutner: Nutrition of Herpetomonas (Strigomonas) culicidarum. Ann. N. Y. Acad. Sci. 56 (5), 972–81 (1953).Google Scholar
  11. De Valera, M.: Note on the difference in growth of Enteromorpha species in various culture media. Kgl. Fysiogr. Sällsk. Hdl. 10, 52–58 (1940).Google Scholar
  12. Dittmar, W.: On the alkalinity of ocean water. Rept. Challenger Expdt., 1871–76, chem. 1, 203 (1884).Google Scholar
  13. Drew, G. H.: The reproduction and early development of Laminaria digitata and Laminaria saccharina. Ann. of Bot. 24, 177–90 (1910).Google Scholar
  14. Droop, M. R.: On the ecology of flagellates from some brackish and fresh water rockpools of Finland. Acta bot. fenn. 51, 1–52 (1953); A note on the isolation of small marine algae and flagellates for pure cultures. J. Mar. Biol. Assoc. U. Kingd. 33, 511–14 (1954a); Cobalamin requirement in Chrysophyceae. Nature (Lond.) 174, 520 (1954b); Some new supra-littoral Protista. J. Mar. Biol. Assoc. U. Kingd. 34, 233–45 (1955a); A pelagic marine diatom requiring cobalamin. J. Mar. Biol. Assoc. U. Kingd. 34, 299–31 (1955b).Google Scholar
  15. Føyn, B.: Lebenszyklus, Cytologie und Sexualität der Chlorophycee Cladophora suhriana Kützing. Arch. Protistenk. 83, 1–56 (1934a); Lebenszyklus und Sexualität der Chlorophycee Ulva lactuca L. Arch. Protistenk. 83, 154–77 (1934b).Google Scholar
  16. Goldberg, E. D., T. J. Walker and A. Whisenand: Phosphate utilization by diatoms. Biol. Bull. Woods Hole 101, 274–84 (1951).Google Scholar
  17. Gross, F.: Zur Biologie und Entwicklungsgeschichte von Noctiluca miliaris. Arch. Protistenk. 83, 178–96 (1934); Notes on the culture of some marine plankton organisms. J. Mar. Biol. Assoc. U. Kingd. 21, 753–68 (1937).Google Scholar
  18. Hämmerling, J.: Über die Geschlechtsverhältnisse von Acetabularia mediterranea und Acetabularia Wettsteinii. Arch. Protistenk. 83, 57–97 (1934).Google Scholar
  19. Harvey, H. W.: Substances controlling the growth of a diatom. J. Mar. Biol. Assoc. U. Kingd. 23, 499–519 (1939); Manganese and the growth of phytoplankton. J. Mar. Biol. Assoc. U. Kingd. 26, 562–79 (1947); Note on the absorption of organic phosphorus compounds by Nitzschia closterium in the dark. J. Mar. Biol. Assoc. U. Kingd. 31, 475–76 (1953); The Chemistry and Fertility of Sea Waters. Cambridge; University Press 1955.Google Scholar
  20. Hashimoto, Y.: Vitamin B12 in marine and freshwater algae. J. Vitaminol. (Japan) 1, 49–54 (1954).Google Scholar
  21. Haxo, F. T., and B. M. Sweeney: Bioluminescence in Gonyaulax polyedra. In The Luminescence of Biological Systems, ed. F. H. Johnson, Washington, D. C.: Amer. Ass. Advancement of Sci. 1955.Google Scholar
  22. Herbst, C.: Über die zur Entwicklung der Seeigellarven notwendigen anorganischen Stoffe, ihre Rolle und ihre Vertretbarkeit: I: Die zur Entwicklung notwendigen anorganischen Stoffe. Arch. Entwicklungsmech. 5, 649–93 (1897).Google Scholar
  23. Hutner, S. H.: Essentiality of constituents of sea water for growth of a marine diatom. Trans. N. Y. Acad. Sci. 10, 136–41 (1948).Google Scholar
  24. Hutner, S. H., and L. Provasoli: The phytoflagellates. In: Biochemistry and Physiology of Protozoa, ed. A. Lwoff. New York: Academic Press Inc. 1951; A pigmented marine diatom requiring vitamin B12 and uracil, News Bull. Phycological Soc. Amer. 6 (18), 7 (1953).Google Scholar
  25. Hutner, S. H., L. Provasoli, A. Schatz and C. P. Haskins: Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Amer. phil. Soc. 94, 152–70 (1950)Google Scholar
  26. Hutner, S. H., L. Provasoli, E. L. R. Stokstad, C. E. Hoffmann, M. Belt, A. L. Franklin and T. H. Jukes: Assay of anti-pernicious anemia factor with Euglena. Proc. Soc. Exp. Biol. N. Y. 70, 118–20 (1949).Google Scholar
  27. Imai, T., and M. Hatanaka: Studies on marine non-colored flagellates, Monas sp., favorite food of larvae of various marine animals. I: Preliminary research on cultural requirements. Sci. Rep. Tohoku Univ. 18 (4), 304–15 (1950).Google Scholar
  28. Ketchum, B. H., and A. C. Redfield: A method for maintaining a continuous supply of marine diatoms by culture. Biol. Bull., Woods Hole 75, 165–9 (1938).Google Scholar
  29. Kilian, K.: Beiträge zur Kenntnis der Laminarien. Z. Bot. 3, 433–94 (1911).Google Scholar
  30. Kylin, A.: The influence of trace elements on the growth of Ulva lactuca. Kgl. Fysiogr. Sällsk. Hdl. 13 (19), 185–92 (1943); The nitrogen sources and the influence of manganese on the nitrogen assimilation of Ulva lactuca. Kgl. Fysiogr. Sällsk. Hdl. 15 (4), 27–35 (1945).Google Scholar
  31. Kylin, H.: Biologische Analyse des Meerwassers. Kgl. Fysiogr. Sällsk. Hdl. 11 (21), 217–32 (1941); Über den Einfluß von Glucose, Ascorbinsäure und Heteroauxin auf die Keimlinge von Ulva und Enteromorpha. Kgl. Fysiogr. Sällsk. Hdl. 12 (12), 135–48 (1942); Über die Ernährung von Ulva lactuca. Kgl. Fysiogr. Sällsk. Hdl. 13 (21), 202–14 (1943); Über den Zuwachs der Keimlinge von Ulva lactuca in verschiedenen Nährflüssigkeiten. Kgl. Fysogr. Sällsk. Hdl. 16 (23), 225–29 (1946).Google Scholar
  32. Levring, T.: Some culture experiments with marine plankton diatoms. Götesbergs Vetensk. Samh. Handl., B, 3 (12), 1–18 (1945); Some culture experiments with Ulva lactuca. Kgl. Fysiogr. Sällsk. Hdl. 16 (7), 45–56 (1946).Google Scholar
  33. Lewin, J. C.: Silicon metabolism in diatoms. I: Evidence for the role of reduced sulfur compounds in silicon utilization. J. Gen. Physiol 37, 589–99 (1954).Google Scholar
  34. Lewin, R. A.: A marine Stichococcus sp. which requires vitamin B12 (cobalamin). J. Gen. Microbiol. 10, 93–96 (1954); Culture of Prasiola stipitata Suhr. Canad. J. Res. 33, 5–10 (1955).Google Scholar
  35. Lochhead, A. G., and R. H. Thexton: Vitamin B12 as a growth factor for soil bacteria. Nature (Lond.) 167, 1034–35 (1951).Google Scholar
  36. Lwoff, A., et H. Dusi: Culture de divers flagéllés leucophytes en milieu synthétique. C. r. Soc. Biol. (Paris) 127, 53–55 (1938).Google Scholar
  37. Lyman, J., and R. H. Fleming: Composition of sea water. J. Marine Res. 3, 134–46 (1940).Google Scholar
  38. Macloed, R. A., and E. Onofrey: Cation antagonism of the antibacterial antagonism of amines. J. of Biol. Chem. 210, 193–201 (1954).Google Scholar
  39. Matudaira, T.: On inorganic sulphides as a growth-promoting ingredient for diatom. Proc. Imp. Acad. Japan 18, 107–16 (1942).Google Scholar
  40. McClendon, J. F., C. C. Gault and S. Mulholland: The hydrogen ion concentration, CO2-tension and CO2 content of sea water. Publ. Carneg. Inst., No. 251, Marine Biology 1917, 21–69.Google Scholar
  41. Mellor, D. P., and L. Maley: Order of stability of metal complexes. Nature (Lond.) 161, 436–37 (1948).Google Scholar
  42. Miquel, P.: De la culture artificielle des diatomées. Le Diatomiste 1 (9 & 10), 93–99 & 121–28 (1890–93).Google Scholar
  43. Noddack, I., u. W. Noddack: Die Häufigkeiten der Schwermetalle in Meerestieren. Arch. f. Zool. 32, A (4), 1–35 (1939).Google Scholar
  44. Parke, M.: Studies on marine flagellates. J. Mar. Biol. Assoc. U. Kingd. 28, 255–86 (1949); Studies on marine flagellates. II. Three new species of Chrysochromulina. J. Mar. Biol. Assoc. U. Kingd. 34, 579–609 (1955).Google Scholar
  45. Peach, E. A., and J. C. Drummond: On the culture of the marine diatom Nitzschia closterium (F.) minutissima, in artificial sea water. Biochemic. J. 18, 464–68 (1924).Google Scholar
  46. Perrier, E.: De l'emploi de l'eau de mer artificielle pour la conservation des animaux marins et en particulier des huitres dans les grands Aquariums. C. r. Acad. Sci. (Paris) 110, 1076–79 (1890).Google Scholar
  47. Peters, B.: The influence of some inorganic ions on the growth of Enteromorpha intestinalis. Acta Hort. gothoburg. 18, 1–14 (1948).Google Scholar
  48. Pringsheim, E. G.: Die Kultur von Algen in Agar. Beitr. Biol. Pflanz, 11, 305–333 (1912); Zur Physiologie der Euglena gracilis. Beitr. Biol. Pflanz. 12 1–47 (1913); Methoden und Erfahrungen. Beitr. Biol. Pflanz. 14, 283–312 (1926). Pure Cultures of Algae. Cambridge: University Press (1946a); The biphasic or soilwater culture method for growing algae and flagellata. J. Ecology 33, 193 (1946b); On the nutrition of Ochromonas. Quart. J. Micr. Sci. 93, 71–96 (1952).Google Scholar
  49. Provasoli, L., and J. F. Howell: Culture of a marine Gyrodinium in a synthetic medium. Proc. Amer. Soc. Protozool. 3, 6 (1952).Google Scholar
  50. Provasoli, L., and I. J. Pintner: Ecological implications of in vitro nutritional requirements of algal flagellates. Ann. New York Acad. Sci. 56 (5), 839–51 (1953); Cultural characteristics of Phormidium persicinum, an auxotrophic marine red-pigmented blue-green alga. Rapp. Comm. 8th Cong. Internat. Bot. Paris., Sect. 17, 39–40 (1954).Google Scholar
  51. Provasoli, L., J. J. A. McLaughlin and I. J. Pintner: Relative and limiting concentrations of major mineral constituents for the growth of algal flagellates. Trans. N. Y. Acad. Sci., Ser II, 16 (8), 412–17 (1954).Google Scholar
  52. Robbins, W. J., A. Hervey and M. E. Stebbins: Further observations on Euglena and B12. Bull. Torrey Bot. Club 78, 363–75 (1951).Google Scholar
  53. Rodhe, W.: Environmental requirements of freshwater plankton algae. Symbolae bot. Upsalienses 10 (1), 1–149 (1948).Google Scholar
  54. Ryther, J.: The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York. Biol. Bull., Woods Hole 106 (2), 198–209 (1954).Google Scholar
  55. Schreiber, E.: Die Reinkultur von marinen Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers. Wiss. Meeresuntersuch., N. F. 16 (10), 1–34 (1927).Google Scholar
  56. Storm, J., and S. H. Hutner: Nutrition of Peranema. Ann. New York Acad. Sci. 56 (5), 901–9 (1953).Google Scholar
  57. Spencer, C. P.: Studies on the culture of a marine diatom. J. Mar. Biol. Assoc. U. Kingd. 33, 265–90 (1954).Google Scholar
  58. Sverdrup, H. H., M. W. Johnson and R. H. Fleming: The Oceans. New York: Prentice-Hall 1942.Google Scholar
  59. Sweeney, B. M.: Culture of the dinoflagellate Gymnodinium with soil extract. Amer. J. Bot. 38, 669–77 (1951); Gymnodinium splendens, a marine dinoflagellate requiring B12. Amer. J. Bot. 41, 821–4 (1954).Google Scholar
  60. Thompson, T. G., and R. J. Robinson: Chemistry of the sea. Bull. Nat. Res. Coun., Wash., No. 85, 5, 95–203 (1932).Google Scholar
  61. Van't Hoff, J. H.: Zur Bildung der ozeanischen Salzablagerungen. Braunschweig 1905.Google Scholar
  62. Vishniac, H. S.: Marine mycology. Trans. N. Y. Acad. Sci., Ser. II, 17 (4), 352–60 (1955a); Nutritional requirements of isolates of Labyrinthula spp. J. Gen. Microbiol. 12, 455–63 (1955b).Google Scholar
  63. Vishniac, H. S., and S. W. Watson: The steroid requirements of Labyrinthula vitellina var pacifica. J. Gen. Microbiol. 8, 248–55 (1953).Google Scholar
  64. Wilson, D. P.: A biological difference between natural sea waters. J. Mar. Biol. Assoc. U. Kingd. 30, 1–20 (1951).Google Scholar
  65. Wilson, W. B., and A. Collier: Preliminary notes on culturing Gymnodinium brevis Davis. Science (Lancaster, Pa.) 121, No. 3142, 394–95 (1955).Google Scholar

Copyright information

© Springer-Verlag 1957

Authors and Affiliations

  • L. Provasoli
    • 1
    • 2
  • J. J. A. McLaughlin
    • 1
    • 2
  • M. R. Droop
    • 1
    • 2
  1. 1.Haskins LaboratoriesNew YorkUSA
  2. 2.the Marine StationMillportScotland

Personalised recommendations