Advertisement

Current Genetics

, Volume 15, Issue 1, pp 1–6 | Cite as

A method for the efficient transfer of isolated mitochondria into yeast protoplasts

  • Pavol Sulo
  • Peter Griač
  • Vlasta Klobučníková
  • Ladislav Kováč
Original Articles

Summary

When protoplasts isolated from non-respiring rho0 strains of S. cerevisiae are incubated with mitochondria from respiring rho+ strains in the presence of polyethylene glycol, a small fraction of the acceptor protoplasts acquires respiratory capacity. Pretreatment of the isolated mitochondria and protoplasts with Ca2+ ions enhanced the frequency of ensuing respiration-competent colonies by almost three orders of magnitude. When mitochondria were isolated from a strain exhibiting killer capacity as a cytoplasmic marker, in addition to the appropriate nuclear and mitochondrial markers, about one-third of the ensuing rho+ colonies were not killers. Possible mechanisms for the transfer of mitochondria into acceptor protoplasts were studied.

Key words

Fusion Killer particles Mitochondria Protoplasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnboim HC, Doly J (1979) Nucleic Acid Res 7:1513–1523Google Scholar
  2. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Science 240:1534–1538Google Scholar
  3. Curran BPG, Carter BLA (1986) Curr Genet 10:943–945Google Scholar
  4. El-Sherbeini M, Bostian KA (1987) Proc Natl Acad Sci USA 84:4293–4297Google Scholar
  5. Fink GR, Styles GN (1972) Proc Natl Acad Sci USA 69:2846–2849Google Scholar
  6. Fried HM, Fink GR (1978) Proc Natl Acad Sci USA 75:4224–4228Google Scholar
  7. Fukuda H, Kimura A (1980) FEBS Lett 113:58–60Google Scholar
  8. Goodey AR, Bevan EA (1983) Curr Genet 7:69–72Google Scholar
  9. Gunge N, Sakaguchi K (1979) Mol Gen Genet 170:243–247Google Scholar
  10. Hrmová M, Farkaš V, Kopecká M (1984) J Microbiol Methods 2:257–260Google Scholar
  11. Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Science 240:1538–1541Google Scholar
  12. Kopecká M, Gabriel M, Nečas O (1974) J Gen Microbiol 81:111–120Google Scholar
  13. Kováč L, Bednárová H, Greksák M (1968) Biochim Biophys Acta 153:32–42Google Scholar
  14. Lang B, Burger G, Doxiadis I, Thomas DY, Bandlow W, Kaudewitz F (1977) Anal Biochem 77:110–121Google Scholar
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  16. Ortega Ruiz JM (1977) Microbios Lett 4:133–137Google Scholar
  17. Rose MD, Price BR, Fink GR (1986) Mol Cell Biol 6:3490–3497Google Scholar
  18. Tipper DJ, Bostian KA (1984) Microbiol Rev 48:126–156Google Scholar
  19. Tuppy H, Wildner G (1965) Biochem Biophys Res Commun 20:733–738Google Scholar
  20. Wickner RB (1983) Arch Biochem Biophys 222:1–11Google Scholar
  21. Wickner RB (1986) Annu Rev Biochem 55:373–395Google Scholar
  22. Yoshida K (1979) Plant Cell Physiol 20:851–856Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Pavol Sulo
    • 1
  • Peter Griač
    • 1
  • Vlasta Klobučníková
    • 1
  • Ladislav Kováč
    • 1
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesIvanka pri DunajiCzechoslovakia

Personalised recommendations