Molecular Biology Reports

, Volume 12, Issue 4, pp 277–283

Sequence of a cDNA encoding human keratin No 10 selected according to structural homologies of keratins and their tissue-specific expression

  • Michel Y. Darmon
  • Alix Sémat
  • Michèle C. Darmon
  • Marc Vasseur
Article

Abstract

We present here the nucleotide sequence of a 1700 bp-long cDNA encoding human epidermal keratin No. 10 (56.5 kDa). cDNA clones of the acidic keratin family were first isolated from a pBR322 human epidermal cDNA library by hybridization with a probe coding for keratin No. 14. Differential hybridization using total cDNA probes prepared from poly(A)+ RNA extracted either from epidermis (which contains keratin No. 10) and from squamous carcinoma or hepatoma cell lines (which do not express keratin No. 10) made possible the selection of clones potentially coding for keratin No. 10. The 1.7 kb sequence exhibits the characteristic features of an acidic keratin with a constant central rod domain and C-terminal variable structures. Moreover, the sequence shows extensive homologies with the cDNA of murine keratin No. 10.

Key words

keratins epidermis differentiation cDNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SteinertPM, StevenAC & RoopDR (1985) Cell 42: 411–419Google Scholar
  2. 2.
    SteinertPM & ParryDAD (1985) Ann. Rev. Cell Biol. 1: 41–65Google Scholar
  3. 3.
    Sun T-T, Eichner R, Schermer A, Cooper D, Nelson WF & Weiss RA (1984) Cancer Cells 1 — The Transformed Phenotype (pp. 169–176). Cold Spring Harbor LaboratoryGoogle Scholar
  4. 4.
    MarchukD, McCrohonS & FuchsE (1984) Cell 39: 491–498Google Scholar
  5. 5.
    FuchsE (1983) J. Invest. Dermatol. 81: 141s-144sGoogle Scholar
  6. 6.
    HatzfeldM & FrankeWW (1985) J. Cell Biol. 101: 1826–1841Google Scholar
  7. 7.
    MollR, FrankeWW & SchillerDL (1982) Cell 31: 11–24Google Scholar
  8. 8.
    TsengSCG, JarvinenMJ, NelsonWG, HuangJW, Woodcock-MitchellJ & SunTT (1982) Cell 30: 361–372Google Scholar
  9. 9.
    FuchsE & GreenH (1981) Cell 19: 1033–1042Google Scholar
  10. 10.
    FuchsE & GreenH (1981) Cell 25: 617–625Google Scholar
  11. 11.
    JohnsonLD, IdlerWW, ZhouWM, RoopDP & SteinertPM (1985) Proc. Natl. Acad. Sci. USA 82: 1896–1900Google Scholar
  12. 12.
    MarchukD, McCrohonS & FuchsE (1985) Proc. Natl. Acad. Sci. USA 82: 1609–1613Google Scholar
  13. 13.
    BoukampP, RupniakHTR & FuseningNE (1985) Cancer Res. 45: 5582–5592Google Scholar
  14. 14.
    LamourouxA, Faucon BiguetN, SamolykD, PrivatA, SalomonJC, PujolJF & MalletJ (1982) Proc. Natl. Acad. Sci. USA 79: 3881–3885Google Scholar
  15. 15.
    MessingJ (1983) Meth. Enzymol. Recomb. DNA Tech. 101: C, 20–78Google Scholar
  16. 16.
    SangerF, NicklenS & CoulsonAR (1978) Proc. Natl. Acad. Sci. USA 74: 5463–5467Google Scholar
  17. 17.
    SteinertPM, RiceRH, RoopDR, TrusBL & StevenAC (1983) Nature 302: 794–800Google Scholar
  18. 18.
    HanukogluI & FuchsE (1983) Cell 33: 915–924Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • Michel Y. Darmon
    • 1
  • Alix Sémat
    • 1
  • Michèle C. Darmon
    • 2
  • Marc Vasseur
    • 3
  1. 1.Sophia AntipolisCentre International de Recherches Dermatologiques (CIRD)Valbonne CédexFrance
  2. 2.Département de Génétique Moléculaire, Laboratoire de Neurobiologie CellulaireCNRSGif/YvetteFrance
  3. 3.UER de BiochimieUniversité de Paris 7ParisFrance

Personalised recommendations