Meccanica

, Volume 31, Issue 1, pp 73–85 | Cite as

A real time forecasting model for landslides triggered by rainfall

  • Beniamino Sirangelo
  • Pasquale Versace
Article

Abstract

The FLaIR model has been developed for the simulation and the forecasting of landslide movements activated by rainfall. It is composed of two modules. The first, rainfall-landslide module, correlates precipitation and landslide occurrence. The second, stochastic rainfall module, provides synthetic generation of rainfalls, giving a probabilistic representation of future precipitations. A mobility function, schematised as convolution of the rainfall intensity and a filter function, is related to the probability of landslide occurrence. The forecasting consists of the estimation at time γ of the value that the mobility function may attain to, at time t. Such a value depends on both the observed rainfall intensity, measured before γ, and the estimated one, derived from the stochastic rainfall module in the interval ]γ, t]. Then the mobility function is composed of a deterministic and a stochastic part. In the paper a parameter, variance index, is introduced in order to describe the roles of the two components. For two very general classes of filters the analytical form of the variance index is determined providing an easy evaluation of the weights of the two components. The behaviour of different types of landslides is finally emphasised by two case studies.

Key words

Rainfall Landslide Forecasting Stochastic model Hydrometeorology 

Sommario

Nel presente lavoro viene presentato un modello, denominato FLaIR, per la simulazione e la previsione dei movimenti franosi innescati dalle precipitazioni. Esso si compone di due moduli: il primo correla le piogge con gli eventi franosi; il secondo effettua, invece, una generazione sintetica di dati di precipitazione, fornendo una rappresentazione probabilistica delle piogge future. La probabilità del verificarsi dell'evento franoso è messa in relazione con una funzione di mobilizzazione, schematizzata come convoluzione tra le intensità di pioggia e una funzione filtro. La previsione consiste nella stima, al tempo γ, del valore che la funzione di mobilizzazione potrà attingere al tempo t. Tale valore dipenderà sia dalle intensità di pioggia osservate, misurate prima di γ, sia da quelle stimate, nell'intervallo ]γ, t], derivanti dal modello stocastico di precipitazione. Il modello risulta, dunque, formato da due componenti: una di natura deterministica e l'altra di natura stocastica. Al fine di descrivere il ruolo di ciascuna delle due componenti viene introdotto un parametro, detto indice di varianza, per il quale viene determinata l'espressione analitica per due classi, molto generali, di funzioni filtro. Tali espressioni consentono una facile valutazione del peso di ciascuna componente. Viene, infine, analizzato il comportamento di frane di diversa tipologia tramite lo studio di due casi reali.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sowers G.F. and Royster D.L., ‘Field investigation’ in: SchusterR.L. and KrizekR.J. (eds.), Landslides: Analysis and Control, National Academy of Science, Transport Research Board, Special Report 176, Washington, D.C., 1978Google Scholar
  2. 2.
    Moser, M. and Hohensin, F., ‘Geotechnical aspects of soil slips in alpine regions’, Eng. Geol., 19 (1983).Google Scholar
  3. 3.
    Guidicini, G. and Iwasa, O.Y., ‘Tentative correlation between rainfall and landslide in a humid tropical environment’, Proc. Symp. on Landslides and other Mass Movements, Praha, Bull, IAEG 16, 1977.Google Scholar
  4. 4.
    Brand, E.W., Premchitt, J., and Phillipson, H.B., ‘Relationship between rainfall and landslides in Hong Kong’, Proc. IV Int. Symp. on Landslides, Toronto, Canada, 1984.Google Scholar
  5. 5.
    Govi, M., Mortara, G., and Sorzana, P.F., ‘Eventi idrologici e frane’, Geologia Applicata ed Idrogeologia, 18(3) (1984).Google Scholar
  6. 6.
    Cancelli, A. and Nova, R., ‘Landslides in soil and debris cover triggered by Valtellina (Central Alps, Italy)’, Proc. IV Conf. and Field Workshop on Landslides, Tokyo, 1985.Google Scholar
  7. 7.
    Cascini, L. and Versace, P., ‘Relationship between rainfall and landslide in a gneissic cover’, Proc. V Int. Symp. on Landslides, Lausanne, Switzerland, 1988.Google Scholar
  8. 8.
    Del Prete, M., Giaccardi, E., and Trisorio-Liuzzi, G., ‘Rischio da frane intermittenti a cinematica lenta nelle aree montuose e collinari urbanizzate della Basilicata’, CNR-GNDCI, Linea 2 — Previsione e Prevenzione di Eventi Franosi a Grande Rischio, Rapporto 1992.Google Scholar
  9. 9.
    Onodera, T., Yoshinaka, R., and Kazama, H., ‘Slope failures caused by heavy rainfall in Japan’, Proc. II Int. Conf. IAEG, 1974.Google Scholar
  10. 10.
    Fukuoka, M., ‘Landslides associated with rainfall’, Geot. Eng., 11 (1980).Google Scholar
  11. 11.
    Crozier, M.J. and Eyles, R.J., ‘Assessing the probability of rapid mass movement’, Proc. III Australian-New Zealand Conf. on Geomechanics, 1980.Google Scholar
  12. 12.
    Skempton, A.W., Leadbeater, A.D., and Chandler, R.J., ‘The Mam Tor landslide, North Derbyshire’, Phil. Trans. R. Soc. Lond., Ser. A, 329 (1989).Google Scholar
  13. 13.
    Campbell R.K., Soil slips, debris flow and rainstorms in the Santa Monica Mountains and vicinity, Southern California, U.S. Geol. Survey, Professional Paper 851, 1975.Google Scholar
  14. 14.
    Caine N., ‘The rainfall-intensity-duration control of shallow landslides and debris flows’, Geogr. Annaler, 62A (1980) 23–27.Google Scholar
  15. 15.
    Cannon S.H. and Ellen S., ‘Rainfall conditions for abundant debris avalanches, San Francisco Bay, California’, Calif. Geol., 38(12) (1985) 267–272.Google Scholar
  16. 16.
    Wieczoreck, G.F., ‘Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California’, in: Costa J.E. and Wieczoreck G.F. (eds.), Debris Flows Avalanches: Process, Recognition and Mutigation, Reviews in Eng. Geol., Geol. Soc. of America, 7 (1987) 93–104.Google Scholar
  17. 17.
    Mitchue M. ‘A method for predicting slope failures on cliff and mountain due to heavy rain’, Natural Disaster Science, 7(1) (1985) 1–12.Google Scholar
  18. 18.
    Keefer D.K., et al., ‘Real-time landslide warning during heavy rainfall’, Science 238 (1987) 921–926.Google Scholar
  19. 19.
    Sirangelo, B. and Versace, P., ‘Modelli stocastici di precipitazione e soglie pluviometriche di innesco dei movimenti franosi’, Atti del XXIII Convegno di Idraulica e Costruzioni Idrauliche, Firenze, 1992, pp. D361–D373.Google Scholar
  20. 20.
    Sirangelo, B. and Versace, P., ‘Identificazione dei modelli stocastici di pioggia e loro applicabilità nella previsione in tempo reale dei movimenti franosi’, CNR-GNDCI, Linea 1-Previsione e Prevenzione degli Eventi Idrologici Estremi e loro Controllo, Rapporto 1990–91, 1993.Google Scholar
  21. 21.
    Kavvas M.L. and Delleur J.W., ‘A stochastic cluster model of daily rainfall sequences’, Water Resour. Res., 17(4) (1981) 1151–1160.Google Scholar
  22. 22.
    Rodriguez-Iturbe I., Gupta V.K., and Waymire E., ‘Scale considerations in the modeling of temporal rainfall’, Water Resour. Res., 20(11) (1984) 1611–1619.Google Scholar
  23. 23.
    Rodriguez-Iturbe I., Cox D.R., and Isham V., ‘Some models for rainfall based on stochastic point processes’, Proc. R. Soc. Lond., Ser. A, 410 (1987) 269–288.Google Scholar
  24. 24.
    Entekhabi D., Rodriguez-Iturbe I., and Eagleson P.S., ‘Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulses model: parameter estimation and validation’, Water Resour. Res., 25(2) (1989) 295–302.Google Scholar
  25. 25.
    Sirangelo, B., ‘Un modello poissoniano non omogeneo per l'analisi delle piogge cumulate su lunghi intervalli temporali’, Idrotecnica, (3) (1994) 125–158.Google Scholar
  26. 26.
    Lloyd E. ‘Probability’, in: LedermannW., (ed.), Handbook of Applicable Mathematics, Wiley, New York, 1980.Google Scholar
  27. 27.
    Parzen E., Stochastic Processes, Holden-Day, San Francisco, Ca, 1962.Google Scholar
  28. 28.
    Snyder D.L., Random Point Processes, Wiley, New York, 1975.Google Scholar
  29. 29.
    Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1968.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Beniamino Sirangelo
    • 1
  • Pasquale Versace
    • 2
  1. 1.Dipartimento di Ingegneria CivileUniversità di SalernoFisciano (SA)Italy
  2. 2.Dipartimento di Difesa del SuoloUniversità della CalabriaMontalto Uffugo Scalo (CS)Italy

Personalised recommendations