Polar Biology

, Volume 7, Issue 5, pp 253–266

Meiobenthic stocks and benthic activity on the NE-Svalbard shelf and in the Nansen Basin

  • Olaf Pfannkuche
  • Hjalmar Thiel


High Arctic meiofaunal distribution, standing stock, sediment chemistry and benthic respiratory activity (determined by sediment oxygen consumption using a shipboard technique) were studied in summer 1980 on the NE Svalbard shelf (northern Barents Sea) and along a transect into the Nansen Basin, over a depth range of 240–3920 m. Particulate sediment proteins, carbohydrates and adenylates were measured as additional measures of benthic biomass. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigments (chlorophylls, pheopigments) were assayed. Pigment concentrations were found comparable to values in sediments from the boreal and temperate N-Atlantic. Meiofauna, which was abundant on the shelf, decreased in numbers and biomasses with increasing depth, as did sediment proteins, carbohydrates, adenylates and sediment oxygen consumption. Meiofaunal abundances and biomasses within the Nansen Basin were comparable with those observed in abyssal sediments of the North Atlantic. Nematodes clearly dominated in metazoan meiofauna. Protozoans were abundant in shelf sediments. Probably in response to the sedimentation of the plankton bloom, meiofauna abundance and biomass as well as sediment proteins, carbohydrates and adenylates were significantly correlated to the amount of sediment bound chloroplastic pigments, stressing the importance of food quantity to determine benthic stocks. Ninety-four percent of the variance in sediment oxygen consumption were caused by chloroplastic pigments. Benthic respiration, calculated per unit biomass, was 3–10 times lower than in the East Atlantic, suggesting low turnover rates in combination with a high standing stocks for the high Arctic benthos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aargard K (1981) On the deep circulation in the Arctic Ocean. Deep-Sea Res 25A:251–268Google Scholar
  2. Aargard K, Swift JH, Carmack EC (1981) On the halocline of the Arctic Ocean. Deep-Sea Res 25A:529–545Google Scholar
  3. Ankar S, Elmgren R (1976) The benthic macro- and meiofauna of the Askö-Landsort area (northern Baltic proper). Contr Askö Lab Univ Stockholm 11:1–115Google Scholar
  4. Billett DSM, Lampitt RS, Rice AL, Mantoura RCF (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522Google Scholar
  5. Bomsel J-L, Pradet A (1968) Study of adenosine 5′-mono,-di and triphosphate in plant tissues. 4. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim Biophys Acta 162:230–242Google Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254Google Scholar
  7. Bulleid NG (1978) An improved method for the extraction of adenosine triphosphate from marine sediment and seawater. Limnol Oceanogr 23:174–178Google Scholar
  8. Burnett BR (1981) Quantitative sampling of nanobiota (microbiota) of the deep-sea benthos. 3. The bathyal San Diego Trough. Deep-Sea Res 28:649–663Google Scholar
  9. Carey AG Jr, Montagna PA (1982) Arctic sea ice faunal assemblage: First approach to description and source of underice meiofauna. Mar Ecol Prog Ser 8:1–8Google Scholar
  10. Carney RS, Haedrich RL, Rowe GT (1983) Zonation of fauna in the deep-sea. In: Rowe GT (ed) The sea, Vol 8. Wiley and Sons, New York, pp 371–398Google Scholar
  11. Dahlbäck B, Gunnarson AH, Hermansson M (1982) Microbial investigations of surface microlayers, watercolumn, ice and sediment in the Arctic Ocean. Mar Ecol Prog Ser 9:101–109Google Scholar
  12. Dinet A (1979) A quantitative survey of meiobenthos in the Norwegian Sea. Ambio Spec Rep 6:75–77Google Scholar
  13. Dinet A, Vivier M-H (1977) Le méiobenthos abyssal du Golfe de Gascogne. 1. Considération sur les donées quantitatives. Cah Biol Mar 18:85–97Google Scholar
  14. Eigener U (1973) Die Adeninnukleotide von Nitrobacter winogradskyi Buch und ihre regulatorische Bedeutung. Dissertation Universität Hamburg, 65 ppGoogle Scholar
  15. Faubel A, Hartwig E, Thiel H (1983) On the ecology of the benthos of sublittoral sediments, Fladen Ground, North Sea. 1. Meiofauna standing stock and estimation of production. “Meteor” Forschungsergebn, Reihe D 36:35–48Google Scholar
  16. Frauenheim K (1984) Gesamtprotein im Sediment als Biomasseindikator — Untersuchungen im Auftriebsgebiet vor Nordwestafrika. Diplomarbeit Fachber Biol Universität Hamburg, 85 ppGoogle Scholar
  17. Graf G, Bengtson W, Diesner U, Schulz R, Theede H (1982) Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Mar Biol 67:201–208Google Scholar
  18. Handa H (1967) The distribution of the dissolved and the particulate carbohydrates in the Kuroshio and its adjacent areas. J Oceanogr Soc Japan 23:115–123Google Scholar
  19. Hansen MD (1978) Nahrung und Freßverhalten bei Sedimentfressern, dargestellt am Beispiel von Sipunculiden und Holothurien. Helgol Wiss Meeresunters 31:191–221Google Scholar
  20. Hendrikson P (1975) Auf- und Abbauprozesse partikulärer organischer Substanz anhand von Seston- und Sinkstoffanalysen. Dissertation Universität Kiel, 160 ppGoogle Scholar
  21. Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res 21:185–209Google Scholar
  22. Kalbhen DA, Koch HJ (1967) Methodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischem Material mit dem Firefly-Enzymsystem. Z Klin Chem Klin Biochem 5:299–304Google Scholar
  23. Koltun VM (1964) Studies of the bottom fauna of the Greenland Sea and the central part of the Arctic Basin (in Russian). Tr Arkt Antarkt Nauchno-Issled Inst 259:13–78Google Scholar
  24. Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346Google Scholar
  25. McIntyre AD (1964) Meiobenthos of sublittoral muds. J Mar Biol Assoc UK 44:665–674Google Scholar
  26. Palosuo E, Leppäranta M (1982) Ice conditions between Svalbard and Franz Josef Land on Ymer-80 expedition, July 1980. Symp Rep Voksenasen, Oslo, Oct 1982: Arktis som livsmiljö, 13 ppGoogle Scholar
  27. Pamatmat MM (1971) Oxygen consumption by the seabed. 4. Shipboard and laboratory experiments. Limnol Oceanogr 16:536–550Google Scholar
  28. Pamatmat MM (1975) In situ metabolism of benthic communities. Cah Biol Mar 16:613–633Google Scholar
  29. Pamatmat MM (1977) Benthic community metabolism: a review and assessment of present status and outlook. In: Coull BC (ed) Ecology of marine benthos. University of South Carolina Press, pp 89–111Google Scholar
  30. Paul AZ, Menzies RJ (1974) Benthic ecology of the high Arctic deep sea. Mar Biol 27:251–262Google Scholar
  31. Perkin RG, Lewis EL (1984) Mixing in the West Spitsbergen Current. J Physical Oceanogr 14:1315–1325Google Scholar
  32. Pfannkuche O (1985) The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks. Oceanol Acta 8:343–353Google Scholar
  33. Pfannkuche O, Theeg R, Thiel H (1983) Benthic activity, abundance and biomass under an area of low upwelling off Morocco, Northwest Africa. “Meteor” Forschungsergebn, Reihe D 36:85–96Google Scholar
  34. Remmert H (1980) Arctic animal ecology. Springer, Berlin Heidelberg New York, pp 250Google Scholar
  35. Rey F, Loeng H (1985) The influence of ice and hydrographic conditions on the development of phytoplankton in the Barents Sea. In: Gray JS, Christiansen ME (eds) Marine biology of Polar regions and effects of stress on marine organisms. Wiley and Sons, New York, pp 49–63Google Scholar
  36. Schytt V (1980) Ymer-80, the Swedish Arctic expedition. Ambio 9:52–54Google Scholar
  37. Shirayama Y (1983) The size structure of deep-sea meio- and macrobenthos in the western Pacific. Int Rev Ges Hydrobiol 68:799–810Google Scholar
  38. Shirayama Y (1984) Vertical distribution of meiobenthos in the sediment profile in bathyal, abyssal and hadal deep sea systems of the western Pacific. Oceanol Acta 7:123–129Google Scholar
  39. Shuman FR, Lorenzen CF (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol Oceanogr 20:580–586Google Scholar
  40. Slagstad D (1985) A model of phytoplankton in the marginal seaice zone of the Barents Sea. In: Gray JS, Christiansen ME (eds) Marine Biology of Polar regions and effects of stress on marine organisms. Wiley and Sons, New York, pp 35–47Google Scholar
  41. Snider LJ, Burnett BR, Hessler RR (1984) The composition of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep-Sea Res 31:1225–1249Google Scholar
  42. Smith KL Jr (1978) Benthic community respiration in the N. W. Atlantic Ocean: in situ measurements from 40 to 5200 m. Mar Biol 47:337–347Google Scholar
  43. Smith KL Jr, Clifford CH, Elliason AH, Walden B, Rowe GT, Teal JM (1976) A free vehicle for measuring benthic community metabolism. Limnol Oceanogr 21:164–170Google Scholar
  44. Smith KL Jr, Hinga KR (1983) Sediment community respiration in the deep sea. In: Rowe GT (ed) The sea, Vol 8. Wiley and Sons, New York, pp 331–370Google Scholar
  45. Smith KL Jr, Teal JM (1973) Deep-sea benthic community respiration: an in situ study at 1850 meters. Science 179:282–283Google Scholar
  46. Spector T (1978) Refinement of the Coomassie Blue Method of protein quantitation. Anal Biochem 86:142–146Google Scholar
  47. Stripp K (1969) Jahreszeitliche Fluktuationen von Makrofauna und Meiofauna in der Helgoländer Bucht. Veröff Inst Meeresforsch Bremerhaven 12:65–94Google Scholar
  48. Strömberg J-O (in press) Northern Svalbard wates. In: Rey L (ed) Marine Living System of the far North. Proc 6th Conf Comité Arctique Int. Fairbanks 1985, Brill & CoGoogle Scholar
  49. Swift JH, Takahashi T, Livingston HD (1983) The contribution of the Greenland and Barents Seas to the deep water of the Arctic Ocean. J Geophys Res 88:5981–5996Google Scholar
  50. Thiel H (1971) Häufigkeit und Verteilung der Meiofauna im Bereich des Island-Färöer-Rückens. Ber Dtsch Wiss Komm Meeresforsch 22:99–128Google Scholar
  51. Thiel H (1975) The size structure of the deep-sea benthos. Int Rev Ges Hydrobiol 60:575–606Google Scholar
  52. Thiel H (1978) Benthos in upwelling regions. In: Boje R, Tomczak M (eds) Upwelling ecosystems. Springer, Berlin Heidelberg New York, pp 124–138Google Scholar
  53. Thiel H (1982) Zoobenthos of the CINECA area and other upwelling regions. Rapp PV Reun Cons Int Explor Mer 180:323–334Google Scholar
  54. Thiel H (1983) Meiobenthos and nanobenthos of the deep-sea. In: Rowe GT (ed) The sea, Vol 8. Wiley and Sons, New York, pp 167–230Google Scholar
  55. Tietjen JH (1971) Ecology and distribution of deep-sea meiobenthos off North Carolina. Deep-Sea Res 18:941–957Google Scholar
  56. Widbom B (1983) Colonization of azoic sediment by sublittoral meiofauna in Gullmar Fjord, Swedish west coast. In: Proc 17th Eur Mar Biol Symp, Brest. Oceanol Acta No SP, pp 213–217Google Scholar
  57. Zenkevitch L (1963) Biology of the seas of the U. S. S. R. Allan and Unwin, London, pp 955Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Olaf Pfannkuche
    • 1
  • Hjalmar Thiel
    • 1
  1. 1.Institut für Hydrobiologie und Fischereiwissenschaft der Universität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations