Advertisement

Polar Biology

, Volume 9, Issue 2, pp 69–77 | Cite as

Occupation of the Antarctic continent by petrels during the past 35 000 years: Inferences from a 14C study of stomach oil deposits

  • A. Hiller
  • U. Wand
  • H. Kämpf
  • W. Stackebrandt
Article

Summary

The dated material was taken from organic deposits occurring in snow petrel colonies of the Untersee Oasis, central Queen Maud Land, East Antarctica. These deposits have been formed by accumulation and solidification of stomach oil regurgitated by petrels over a long time period. Within the deposits the 14C ages tend to increase with depth. Local mixing and irregular 14C profiles are of minor importance. This confirms the suitability of such material for 14C dating. According to the 14C chronology the colonies near Lake Untersee have been continuously occupied at least during the past 8 kyr. Surprisingly old ages for three samples, namely 13.8, 18.4 and 33.9 kyr BP, suggest that breeding colonies must have been in the study area during the last glacial maximum. Information about the minimum age of moraines and the timing of local ice retreat can be obtained from a correlation between the oldest 14C age of the organic material accumulated on moraines and the altitude of the sample site.

Keywords

Sample Site Organic Material Minor Importance Glacial Maximum Dated Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams WR (1985) Environmental determinants of pelagic seabird distribution in the African sector of the Southern Ocean. J Biogeogr 12:473–492Google Scholar
  2. Bardin W (1978) Königin-Maud-Land: Reise in die Antarktis. Neues Leben, BerlinGoogle Scholar
  3. Berger WH, Killingley JS, Vincent E (1985) Timing of deglaciation from an oxygen isotope curve for Atlantic deep-sea sediments. Nature 314:156–158Google Scholar
  4. Boetticher H von (1955) Albatrosse und andere Sturmvögel, vol 163. Ziemsen, Wittenberg Lutherstadt (Neue Brehmbücherei)Google Scholar
  5. Bowra GT, Holdgate MW, Tilbrook PJ (1966) Biological investigations in Tottanfjella and Central heimefrontfjella. Br Antarct Surv Bull 9:63–70Google Scholar
  6. Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705Google Scholar
  7. Brook D, Beck JR (1972) Antarctic petrels, snow petrels and south polar skuas breeding in the Theron Mountains. Br Antarct Surv Bull 27:131–137Google Scholar
  8. Cavalieri DJ, Zwally HJ (1986) Satellite observations of sea ice. Adv Space Res 5:247–255Google Scholar
  9. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam Oxford New York, pp 329–406Google Scholar
  10. Fraser WR, Ainley DG (1986) Ice edges and seabird occurrence in Antarctica. Bioscience 36:258–263Google Scholar
  11. Galimov EM, Shirinsky VG (1975) Ordered distribution of carbon isotopes in individual compounds and components of the lipid fraction of organisms. Geokhimiya 4:503–528Google Scholar
  12. Griffiths AM (1983) Factors affecting the distribution of the Snow petrel (Pagodroma nivea) and the Antarctic petrel (Thalassoica antarctica). Ardea 71:145–150Google Scholar
  13. Hays JD (1978) A review of the Late Quaternary climatic history of Antarctic seas. In: Van Zinderen-Bakker EM (ed) Antarctic glacial history and world palaeoenvironments. Balkema, Rotterdam, pp 57–71Google Scholar
  14. Hiller A, Wand U (1984) Radiocarbon dating of breeding places of petrels in the Antarctic. Zfl-Mitt 89:103–121Google Scholar
  15. Horgan IE, Barrett JA (1985) The use of lipid profiles in comparing the diet of seabirds. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg, pp 493–497Google Scholar
  16. Jones AS, Walker RT (1964) An organic deposit from the Tottanfjella, Dronning Maud Land. Br Antarct Surv Bull 3:21–22Google Scholar
  17. Kolattokudy PE (ed) (1976) Chemistry and biogeochemistry of natural waxes. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  18. Konovalov GV (1962) Nablyudeniya za pticami na Zemle Korolevy Mod (Observations of birds in Queen Maud Land). Inf Byull Sov Antarkt Eksped 35:45–48Google Scholar
  19. Konovalov GV, Shulyatin OG (1964) Unikalny ptichi bazaar v Antarktide (Unique bird bazaar in the Antarctic). Priroda 10:100–101Google Scholar
  20. Korotkevich ES, Konovalov GV, Mikhailova TA (1967) Nachodki mumiyo v gorakh Antarktidy (Finds of mumiyo in mountains of the Antarctic). Inf Byull Sov Antarkt Eksped 66:58–63Google Scholar
  21. Kosenko NG, Kolobov DD (1970) Obsledovanie ozera Unter-Ze (Investigation of Lake Untersee). Inf Byull Sov Antarkt Eksped 79:65–69Google Scholar
  22. Krynauw JR, Allen AR, Auret SH, Brunn V von (1985) A note on breeding sites of snow petrels (Pagodroma nivea) at Robertskollen, Boreas and Passat nunataks and Johnsbrotet, western Dronning Maud Land, Antarctica. S Afr J Antarct Res 13:51–53Google Scholar
  23. Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevitch YS, Kotlyakov VM (1985) A 150 000-year climatic record from Antarctic ice. Nature 316:591–596Google Scholar
  24. Løvenskjöld HL (1960) The snow petrel Pagodroma nivea nesting in Dronning Maud Land. Ibis 102:132–134Google Scholar
  25. Matthews LH (1949) The origin of stomach oils in the petrels, with comparative observations on the avian proventriculus. Ibis 91:373–392Google Scholar
  26. Mehlum F, Bech C, Haftorn S (1985) Ornithological investigations in Mühlig-Hofmannfjella, Dronning Maud Land. Nor Polarinst Rapp Ser 22:27–34Google Scholar
  27. Michel RL, Linick TW (1985) Uptake of bomb-produced carbon-14 by the Weddell Sea. Meteoritics 20:423–435Google Scholar
  28. Olsson IU, El-Daoushy MFAF (1978) Uppsala natural radiocarbon measurements XII. Radiocarbon 20:469–486Google Scholar
  29. Omoto K (1983) The problem and significance of radiocarbon geochronology in Antarctica. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Australian Academy of Science, Canberra, pp 450–452Google Scholar
  30. Pinder R (1966) The cape pigeon, Daption capensis Linnaeus, at Signy Island, South Orkney Islands. Br Antarct Surv Bull 8:19–47Google Scholar
  31. Shackleton NJ, Hall MA, Line J, Cang Shuxi (1983) Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322Google Scholar
  32. Simonov IM, Stackebrandt W, Haendel D, Kaup E, Kämpf H, Loopmann A (1985) Komplexe naturwissenschaftliche Untersuchungen am Unter- und Obersee, zentrales Dronning-Maud-Land, Antarktika. Petermanns Geogr Mitt 129:125–135Google Scholar
  33. Stuiver M, Braziunas TF (1985) Compilation of isotopic dates from Antarctica. Radiocarbon 27:271–275; 117–304Google Scholar
  34. Stuiver M, Östlund HG (1983) GEOSECS Indian Ocean and Mediterranean radiocarbon. Radiocarbon 25:1–29Google Scholar
  35. Tuck GS, Heinzel H (1978) A field guide to the seabirds of Britain and the world. Collins, LondonGoogle Scholar
  36. Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res 34:829–841Google Scholar
  37. Wand U, Pörschmann J (in preparation) Comparison of the fatty acid profiles of fresh and subfossil petrel stomach oilsGoogle Scholar
  38. Warham J (1977) The incidence, function and ecological significance of petrel stomach oils. Proc NZ Ecol Soc 24:84–93Google Scholar
  39. Warham J, Watts R, Dainty RJ (1976) The composition, energy content and function of the stomach oils of petrels (order Procellariiforms). J Exp Mar Biol Ecol 23:1–13Google Scholar
  40. Watson GE (1975) Birds of the Antarctic and Subantarctic. American Geophysical Union, Washington (Antarct Res Ser, vol 24)Google Scholar
  41. Watts R, Warham J (1976) Structure of some intact lipids of petrel stomach oils. Lipids 11:423–429Google Scholar
  42. Williams PM, Linick TW (1975) Use of naturally occurring radiocarbon as a long and short term tracer. In: Isotope ratios as pollutant source and behaviour indicators. IAEA, Vienna, pp 153–167Google Scholar
  43. Yoshida Y, Moriwaki K (1979) Some consideration on elevated coastal features and their dates around Syowa Station, Antarctica. Mem Natl Inst Polar Res (spec issue) 13:220–226Google Scholar
  44. Yusupov RG, Dzhenchuraev DD, Khatamov S (1979) Geokhimicheskie osobennosti Sredne Asiatskogo mumiyo (Geochemical peculiarities of Central Asian mumiyo). Geokhimiya 10:1534–1540Google Scholar
  45. Zink RM (1981) Notes on birds of the Weddell Sea, Antarctica. Gerfaut 71:59–74Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Hiller
    • 1
  • U. Wand
    • 1
  • H. Kämpf
    • 2
  • W. Stackebrandt
    • 2
  1. 1.Zentralinstitut für Isotopen- und StrahlenforschungAkademie der WissenschaftenLeipzigGerman Democratic Republic
  2. 2.Zentralinstitut für Physik der ErdeAkademie der WisenschaftenPotsdamGerman Democratic Republic

Personalised recommendations