Archives of orthopaedic and traumatic surgery

, Volume 101, Issue 3, pp 153–159 | Cite as

The stimulation of bone growth by ultrasound

  • L. R. Duarte


The ultrasonic stimulation of bone growth was investigated in a experimental work in which a set of 45 rabbits were studied according to the following procedure:
  1. a)

    bilateral osteotomy of fibula (23 animals) and bilateral drilled holes on the cortex of femur (22 animals);

  2. b)

    exposure of ultrasound for 15 min per day;

  3. c)

    Radiological and histological evaluations of the progress of the callus;

  4. d)

    photography and measurements of the area of the callus;

  5. e)

    graphical comparisons using the results between controls and stimulated limbs. Pulsed ultrasound, in the form of short bursts, was used at low intensities (below cavitation threshold) so that the temperature variation, at the osteotomy site, was of the order of 0.01° C (constant) a fact that reinforces the assumption that the stimulation mechanism due to the appearence of electric potentials is of non-thermal origin such as that caused by piezoelectricity.



Public Health Temperature Variation Cavitation Experimental Work Electric Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In dieser Arbeit wurde die Stimulierung des Knochenwachstums bei Kaninchen durch Ultraschallbehandlung untersucht. Insgesamt dienten 45 Kaninchen den Experimenten, die wie folgt durchgefüihrt wurden:
  1. a)

    23 Tiere bei der zweiseitigen Osteotomie der Fibula und 22 bei bilateralen Öffnungen der Cortex des Femur.

  2. b)

    Beahndlungsdauer mit Ultraschall täglich 15 min.

  3. c)

    Die Kallusbildung wurde durch Röntgenaufnahmen und Gewebeuntersuchungen ausgewertet.

  4. d)

    Es wurden Aufnahmen und Messungen des Kallusgebietes gemacht und

  5. e)

    graphisch die nicht behandelten und stimulierten Glieder verglichen.


Es wurde pulsierender Ultraschall angewendet, kurz dauernde “bursts” und zwar so, daß die Temperaturschwankung an der Stelle der Osteotomie 0,01°C (konstant) betrug. Dieses stärkt die Hypothese, daß der stimulierende Mechanismus (elektrische Potentiale) nicht thermischen Ursprungs ist, wie durch Piezoelektrizität.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc Jap 12:10Google Scholar
  2. 2.
    Brighton CT, Friedenberg ZB (1966) Bioelectrical potentials in bone. J Bone Jt Surg 48-A:915–923Google Scholar
  3. 3.
    Friedenberg ZB, Kohanin M (1968) The effect of direct current on bone. Surg Gynecol Obstet 127:97–102Google Scholar
  4. 4.
    Friedenberg ZB, Brighton CT (1974) Electrical fracture healing. Ann NY Acad Sci 238:564–574Google Scholar
  5. 5.
    Basset CAL (1964) Effects of electric currents on bone “in vivo”. Nature 204:643–644Google Scholar
  6. 6.
    Basset CAL, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575–577Google Scholar
  7. 7.
    Basset CAL (1978) Repair of non-unions by pulsing electromagnetic fields. Communication presented at Seminar on Perplexing Problems and Scientific Progress in Fracture Management —University of Leuven (Belgium), September 1978Google Scholar
  8. 8.
    Duarte LR (1976) Ultrasonic stimulation of fracture healing. Proceedings of the 11th International Conference on Medical and Biological Engineering, Ottawa, Canada, 1976Google Scholar
  9. 9.
    Wells PNT (1963) The dosimetry of smale ultrasonic beams. Ultrasonics 106:110Google Scholar
  10. 10.
    Wells PNT (1977) Biomedical ultrasonic. Academic Press, London, p 444Google Scholar
  11. 11.
    Webster DF (1980) The role of ultrasound-induced cavitation in the “in vitro” stimulation of collagen synthesis in human fibroblasts. Ultrasonics 33–37Google Scholar
  12. 12.
    Hill CR (1972) Ultrasonic exposure thresholds for changes in cells and tissues. J Acoust Soc Am 52:667–672Google Scholar
  13. 13.
    Athenstaedt H (1970) Permanent longitudinal electric polarization and pyroelectric behavior of collagenous structures and nervous tissue in man and other vertebrates. Nature 228Google Scholar
  14. 14.
    Fukada E, Yasuda I (1964) Piezoelectric effects in collagen. Jap J Appl Physics 3Google Scholar
  15. 15.
    Basset CAL, Becker RO (1962) Generation of electric potentials by bone in response to mechanical stress. Science 137:1063–1064Google Scholar
  16. 16.
    Maeda H (1976) The dependence on temperature and hydration of piezoelectric, dielectric and elastic constants of bone. Jap J Appl Physics 15:2333–2336Google Scholar
  17. 17.
    Anderson JC, Erikson C (1970) Piezoelectric properties of dry and wet bone. Nature 227Google Scholar
  18. 18.
    Johnson MW (1980) Comparison of the electromechanical effects in wet and dry bone. J Biomechanics 13:437–442Google Scholar
  19. 19.
    Lokietek W (1974) Muscle injury potentials — a source of voltage in the undeformed rabbit tibia. J Bone Jt SurgGoogle Scholar
  20. 20.
    Dyson M (1970) Stimulation of tissue regeneration by pulsed plane wave ultrasound. Transact Sonics Ultrasonics SU-17Google Scholar
  21. 21.
    Behari J, Singh S (1981) Ultrasound propagation in in vivo bone. Ultrasonics 87–90Google Scholar
  22. 22.
    Duarte LR (1977) Ultrasonic induced polarization in bone. Proceedings of IV. Brazilian Congress on Biomedical Engineering. Sao Paulo, Brazil, p 157–175Google Scholar
  23. 23.
    Dealler SF (1981) Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. J Med Engin Technol 5:73–79Google Scholar
  24. 24.
    Fukada E, Furukawa T (1981) Piezoelectricity and ferroelectricity in polyvinylidene fluoride. Ultrasonics 31–39Google Scholar

Copyright information

© J.F.Bergmann Verlag 1983

Authors and Affiliations

  • L. R. Duarte
    • 1
  1. 1.Universidade de Sao PauloSao CarlosBrazil

Personalised recommendations