Mycopathologia

, Volume 135, Issue 2, pp 85–88 | Cite as

Influence of fructose on Candida albicans germ tube production

  • V. Vidotto
  • A. Sinicco
  • G. Accattatis
  • Shigeji Aoki
Human and Animal Mycology

Abstract

The influence of different fructose concentrations (5, 3, 1 and 0 g/l) was tested on Germ Tube (GT) production by Candida albicans strain AS3P, using a Minimal Synthetic Medium (MSM) without (NH4)2SO4. The results obtained showed good GT production in the presence of all the different fructose concentrations and in the absence of any nitrogen source. The greatest GT production was obtained with 3 g/l of fructose vs 1 g/l of glucose, after 4 hr of incubation. On the other hand fructose consumption was lower than that of glucose at all concentrations over the 4 hour period. The data obtained may suggest that fructose is metabolized in a different way from glucose for GT production by C. albicans.

Key words

Candida albicans germ tube fructose metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruatto M, Gremmi M, Vidotto V. A new minimal synthetic medium for germ tube production in Candida albicans. Mycopathologia 1991; 116: 159–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Holmes AR, Shepherd MG. Nutritional factors determine germ tube formation in Candida albicans. J Med Vet Mycol 1988; 26: 127–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Koobs DH. Phosphate mediation of the Crab-tree and Pasteur effects. Science 1972; 178: 127–37CrossRefPubMedGoogle Scholar
  4. 4.
    Land GA, McDonald WC, Stjernholm RL, Friedman L. Factors affecting filamentation in Candida albicans. Relationship of the uptake and distribution of proline to morphogenesis in Candida albicans, Infect and Immun 1975; 11: 1014–23.Google Scholar
  5. 5.
    Land GA, McDonald WC, Stjernholm RL, Friedman L. Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicans during filamentation. Infect and Immun 1975; 12: 119–27.Google Scholar
  6. 6.
    Lee KL, Buckley HR, Campbell CC. An aminoacid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 1975; 13: 148–53.PubMedGoogle Scholar
  7. 7.
    Manning M, Mitchell TG. Strain variation and morphogenesis of yeast and mycelial phase Candida albicans in low-sulphate. J Bacteriol 1980; 142: 714–19PubMedGoogle Scholar
  8. 8.
    Martinez JP, Lopez-Ribot JL, Gil ML, Sentandreu R, Ruiz-Herrera J. Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J Gen Microbiol 1990; 136: 1937–43.PubMedGoogle Scholar
  9. 9.
    McGinnis MR. Laboratory Handbook of Medical Mycology. New York: Academic Press 1980.Google Scholar
  10. 10.
    McGoldrick EM, Wheals AE. Controlling the growth rate of Saccharomyces cerevisiae cells using the glucose analogue D-glucosamine, J Gen Microbiol 1989; 135: 2407–11.PubMedGoogle Scholar
  11. 11.
    Niimi M, Kamayama A, Tokunaga M. Respiration of medically important Candida species. J Med Vet Mycol 1988; 26: 198–8.CrossRefGoogle Scholar
  12. 12.
    Odds FC. Candida and candidiasis 2nd ed. London: Baillière Tindall 1988.Google Scholar
  13. 13.
    Paranjape V, Datta A. Role of nutritional status of the cell in pH regulated dimorphism of Candida albicans. FEMS Microbiol Lett 1991; 80: 333–6.CrossRefGoogle Scholar
  14. 14.
    Pollack JR, Hashimoto T. Ethanol-induced germ tube formation in Candida albicans. J Gen Microbiol 1985; 131: 3303–10.PubMedGoogle Scholar
  15. 15.
    Postma E, Van Den Broek JA. Continuous-culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556. J Bacteriol 1990; 172: 2871–6.PubMedGoogle Scholar
  16. 16.
    Santoni G, Gismondi A, Liu JH, Punturieri A, Santoni A, Frati L, Piccoli M, Djeu JY. Candida albicans expresses a fibronectin receptor antigenically related to alpha 5 beta 1 integrin. Microbiol 1994; 140: 2971–9.CrossRefGoogle Scholar
  17. 17.
    Schwarz DS, Larsh HW. Comparative activities of glycolytic enzymes in yeast and mycelial forms of Candida albicans. Mycopathologia 1982; 78: 93–8.CrossRefGoogle Scholar
  18. 18.
    Sevilla MG, Odds FC. Development of Candida albicans hyphae in different growth media-variations in the growth rates, cell dimensions and timing of morphogenetic events. J Gen Microbiol 1986; 132: 3083–8.PubMedGoogle Scholar
  19. 19.
    Shepherd MG, Chiew YY, Ram SP, Sullivan PA. Germ-tube induction in Candida albicans. Can J Microbiol 1980; 26: 21–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Van Urk H, Postma E, Sheffers WA, Van Dijken JP. Glucose transport in Crab-tree positive and Crab-tree negative yeasts. J Gen Microbiol 1989; 135: 2399–406.PubMedGoogle Scholar
  21. 21.
    Vidotto V, Bruatto M, Caramello S, Bugnone C. Growth of opportunistic yeasts on vitamin free solid medium. Microbiologica 1990; 13: 151–5.PubMedGoogle Scholar
  22. 22.
    Vidotto V, Guevara Ochoa L, Cortes JM, Bruatto M. Optimal concentration of ammonium ion in a minimal synthetic medium for the growth of Candida albicans. Mycopathologia 1991; 113: 139–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Vidotto V, Accattatis G, Zhang Q, Campanini G, Aoki S. Glucose influence on germ tube production in Candida albicans. Mycopathologia 1996; 133: 143–7.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • V. Vidotto
    • 1
  • A. Sinicco
    • 1
  • G. Accattatis
    • 1
  • Shigeji Aoki
    • 2
  1. 1.Laboratorio Micologia MedicaIstituto Malattie Infettive Università di TorinoTorinoItaly
  2. 2.General Research InstituteNippon Dental UniversityNiigataJapan

Personalised recommendations