Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Temperature induced atypical morphogenesis of the obligately psychrophilic yeast, Leucosporidium stokesii

  • 16 Accesses

  • 4 Citations


The obligately psychrophilic yeast, Leucosporidium stokesii increased in size, produced irregular wall growth and formed atypical buds when incubated within one to three degrees above 20 °C, the maximum growth temperature. Incubation of cells anaerobically or aerobically in the presence of 2,4-dinitrophenol at the elevated temperatures prevented the development of atypical buds. An investigation of subcellular morphology revealed that the atypical bud was anucleate, did not form a septum between bud and parent cell and produced numerous cytoplasmic vesicles. On shift-down to 15 °C, the optimum growth temperature, nuclear division, migration and septum formation resumed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Cabib, E. 1975. Molecular aspects of yeast morphogenesis. Ann. Rev. Microbiol. 29: 191–214.

  2. 2.

    Cole, R.M., T.J. Popkin, R.J. Boylan & N.H. Mendelson, 1970. Ultrastructure of a temperature-sensitive rod-mutant of Bacillus subtilis. J. Bacteriol. 103: 793–810.

  3. 3.

    Fell, J.W., A.C. Statzell, I.L. Hunter & H.J. Phaff. 1969. Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek, 35: 433–462.

  4. 4.

    Ferroni, G.D. & W.E. Inniss. 1973. Thermally caused filament formation in the psychrophile Bacillus insolitus. Can. J. Microbiol. 19: 581–584.

  5. 5.

    Grant, D.W., N.A. Sinclair & C.H. Nash. 1968. Temperature sensitive glucose fermentation in the obligately psychrophilic yeast, Candida gelida. Can. J. Microbiol. 14: 1105–1110.

  6. 6.

    Gustafson, R.A., R.V. Hardcastle & P.J. Szaniszlo. 1975. Budding in the dimorphic fungus Cladosporium werneckii. Mycol. 67: 942–951.

  7. 7.

    Hagler, A.N. & M.J. Lewis. 1974. Effect of glucose on thermal injury of yeast that may define the maximum temperature of growth. J. Gen. Microbiol. 80: 101–109.

  8. 8.

    Hartwell, L.H. 1973. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J. Mol. Biol. 59: 183–189.

  9. 9.

    Hartwell, L.H. 1973. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J. Bacteriol. 115: 966–971.

  10. 10.

    Hartwell, L.H., J. Culotti & B. Reid. 1970. Genetic control of the cell division cycle in yeast. I. Detection of mutants. Proc. Nat. Acad. Sci., U.S.A. 66: 352–359.

  11. 11.

    Hartwell, L.H., J. Culotti, J.R. Pringle & B.J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183: 46–51.

  12. 12.

    Hartwell, L.H., R.K. Mortimer, J. Culotti & M. Culotti. 1973. Genetic control of the cell division in yeasts. V. Genetic analysis of cdc mutants. Genetics 74: 267–271.

  13. 13.

    Heinen, W. 1971. Inhibition of electron transport and oxidative phosphorylation, pp. 383–393. In J.R. Norris & D.W. Ribbons (eds.) Methods in Microbiology, Vol. 6a, Academic Press, Inc., New York.

  14. 14.

    Hodgman, C.D., R.C. Weast & S.M. Selby. 1958. Handbook of Chemistry and Physics, 39th edition. Cleveland, Ohio, Chemical Rubber Publishing Co., p. 317.

  15. 15.

    Inniss, W.E. 1975. Interaction of temperature and psychrophilic microorganisms. Ann. Rev. Microbiol. 29: 445–465.

  16. 16.

    Larkin, J.M. & J.L. Stokes. 1968. Growth of psychrophilic microorganisms at subzero temperatures. Can. J. Microbiol. 14: 97–101.

  17. 17.

    Mendelson, N.H. & J.D. Gross. 1967. Characterization of a. temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J. Bacteriol. 94: 1603–1608.

  18. 18.

    Muller, I. 1971. Experiments on aging in single cells of Saccharomyces cerevisiae. Arch. Microbiol. 77: 20–25.

  19. 19.

    Nash, C.H. & D.W. Grant. 1969. Thermal stability of ribosomes from a psychrophilic and a mesophilic yeast. Can. J. Microbiol. 15: 1116–1118.

  20. 20.

    Nickerson, W.J. & G. Falcone. 1959. Function of protein disulfide reductase in cellular division of yeasts. in Sulfur in Proteins, Benesch Rheinhold, ed., pp. 409–424. Academic Press, New York.

  21. 21.

    Silver, S.A., I. Yall & N.A. Sinclair. 1977. A molecular basis for the maximum growth temperature of an obligately psychrophilic yeast, Leucosporidium stokesii. J. Bacteriol. 132: 676–680.

  22. 22.

    Sinclair, N.A. 1978. Role of oxygen in the induction of fermentation in the obligately psychrophilic yeast, Leucosporidium stokesii. Can. J. Microbiol. 24: 31–35.

  23. 23.

    Sinclair, N.A. & J.L. Stokes. 1965. Obligately psychrophilic yeasts from the polar regions. Can. J. Microbiol. 11: 259–269.

  24. 24.

    Tang, S.L. & D.H Howard. 1973. Metabolism, macromolecular synthesis, and nuclear behavior of Cryptococcus albidus at 37C. J. Bacteriol. 115: 574–581.

  25. 25.

    Ward, E.W.B. 1968. Temperature-induced changes in hyphal morphology of the psychrophile Sclerotina borealis. Can. J. Microbiol. 46: 524–525.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silver, S.A., Sinclair, N.A. Temperature induced atypical morphogenesis of the obligately psychrophilic yeast, Leucosporidium stokesii. Mycopathologia 67, 59–64 (1979).

Download citation


  • Migration
  • Elevated Temperature
  • Growth Temperature
  • Optimum Growth
  • Maximum Growth