Advertisement

Current Genetics

, Volume 15, Issue 2, pp 99–106 | Cite as

Isolation and complete sequence of the yeast isoleucyl-tRNA synthetase gene (ILS1)

  • Duane W. Martindale
  • Zheng Ming Gu
  • Csilla Csank
Original Articles

Summary

The isoleucyl-tRNA synthetase gene (ILS1) from the yeast Saccharomyces cerevisiae was cloned and sequenced. This gene was initially cloned because it cross-hybridizated to what is now presumed to be the isoleucyl-tRNA synthetase gene (cupC) from the protozoan Tetrahymena hhermophila. The ILS1 gene was determined to be 1,072 amino acids in length. A comparison with a recently published sequence of ILS1 1 from another laboratory (Englisch et al. 1987) was made and differences noted. Two promoter elements were detected, one for general amino acid control and one for constitutive transcription. A heat shock protein (hsp70) gene (probably SSA3) was found 237 by upstream from the ILS1 translation start site. The ILS1 amino acid sequence was compared to isoleucyl-tRNA synthetases from other organisms, as well as to valyl-, leucyl- and methionyl-tRNA synthetases. Regions of conservation between these enzymes were found.

Key words

Yeast Isoleucyl-tRNA synthetase Isoleucine Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Lambowitz AM (1987) Cell 50:331–345Google Scholar
  2. Arndt K, Fink G (1986) Proc Natl Acad Sci 83:8516–8520Google Scholar
  3. Baker DG, Ebel JP, Jakes R, Burton CJ (1982) Eur J Biochem 127:449–457Google Scholar
  4. Baldwin AN, Berg P (1967) J Biol Chem 241:839–845Google Scholar
  5. Benton WD, Davis RW (1977) Science 196:180–182Google Scholar
  6. Borgford TJ, Brand NJ, Gray TE, Fersht AR (1987) Biochem 26:2480–2486Google Scholar
  7. Chatton B, Walter P, Ebel J-P, Lacroute F, Fasiolo F (1988) J Biol Chem 263:52–57Google Scholar
  8. Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) Nature 332:800–805Google Scholar
  9. Donahue TF, Davis RS, Lucchini G, Fink GR (1983) Cell 32:89–98Google Scholar
  10. Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Mol Gen Genet 179:469–482Google Scholar
  11. Englisch U, Englisch S, Markmeyer P, Schischkoff J, Sternbach H, Kratzin H, Cramer F (1987) Biol Chem Hoppe-Seyler 368:971–979Google Scholar
  12. Fersht AR (1986) In: Kirkwood TBL, Rosenberger RF, Galas DJ (eds) Accuracy in molecular processes, chapter 4. Chapman and Hall, London New YorkGoogle Scholar
  13. Hattori M, Sakaki Y (1986) Anal Biochem 152:232–238Google Scholar
  14. Hartwell LH, McLaughlin CS (1968) J Bacteriol 96:1664–1671Google Scholar
  15. Heck JD, Hatfield GW (1988) J Biol Chem 263:868–877Google Scholar
  16. Henikoff S (1984) Gene 28:351–359Google Scholar
  17. Herbert CJ, Labouesse M, Dujardin G, Slonimski PP (1988) EMBO J 7:473–483Google Scholar
  18. Hinnebusch AG, Fink GR (1983) J Biol Chem 258:5238–5247Google Scholar
  19. Hope IA, Struhl K (1985) Cell 43:177–188Google Scholar
  20. Hountondji C, Lederer F, Dessen P, Blanquet S (1986) Biochem 25:16–21Google Scholar
  21. Ingolia TD, Craig EA, McCarthy BJ (1980) Cell 21:669–679Google Scholar
  22. Ingolia TD, Slater MR, Craig EA (1982) Mol Cell Biol 2:1388–1398Google Scholar
  23. Jordana X, Chatton B, Paz-Weisshaar M, Buhler J-M, Cramer F, Ebel JP, Fasiolo F (1987) J Biol Chem 262:7189–7194Google Scholar
  24. Karch F, Toeroek I, Tissieres A (1981) J Mol Biol 148:219–230Google Scholar
  25. Labouesse M, Herbert CJ, Dujardin G, Slonimski PP (1987) EMBO J 6:713–721Google Scholar
  26. Lindquist S (1986) Annu Rev Biochem 55:1151–1191Google Scholar
  27. Lipman DJ, Pearson WR (1985) Science 227:1435–1441Google Scholar
  28. Maniatis T, Frisch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  29. Martindale DW, Bruns PJ (1983) Mol Cell Biol 3:1857–1865Google Scholar
  30. Martindale DW, Martindale HM, Bruns PJ (1986) Nucleic Acids Res 14:1341–1353Google Scholar
  31. Martindale DW, Taylor FM (1988) Nucleic Acids Res 16:2189–2201Google Scholar
  32. Meussdoerffer F, Fink GR (1983) J Biol Chem 258:6293–6299Google Scholar
  33. Rothstein R (1983) Methods Enzymol 101:202–211Google Scholar
  34. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  35. Schimmel P (1987) Annu Rev Biochem 56:125–158Google Scholar
  36. Struhl K (1985) Proc Natl Acad Sci 82:8419–8423Google Scholar
  37. Tabor S, Richardson CC (1987) Proc Natl Acad Sci USA 84:4767–4771Google Scholar
  38. Tzagoloff A, Akai A, Kurkulos M, Repetto B (1988) J Biol Chem 263:850–856Google Scholar
  39. Webster T, Tsai H, Kula M, Mackie GA, Schimmel P (1984) Science 226:1315–1317Google Scholar
  40. Werner-Washburne M, Stone DE, Craig EA (1987) Mol Cell Biol 7:2568–2577Google Scholar
  41. Woolford JL Jr, Rosbash M (1981) Nucleic Acid Res 9:5021–5036Google Scholar
  42. Zaret KS, Sherman F (1982) Cell 28:563–573Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Duane W. Martindale
    • 1
  • Zheng Ming Gu
    • 1
  • Csilla Csank
    • 1
  1. 1.Department of MicrobiologyMacdonald College of McGill UniversitySte Anne de BellevueCanada

Personalised recommendations