Current Genetics

, Volume 15, Issue 2, pp 75–81

A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations

  • Ine Schaaff
  • Jeremy B. A. Green
  • Daniel Gozalbo
  • Stefan Hohmann
Original Articles

Summary

We deleted most of the pyruvate decarboxylase structural gene PDC1 from the genome of Saccharomyces cerevisiae. Surprisingly, mutants carrying this deletion allele showed a completely different phenotype than previously described point mutations. They were able to ferment glucose and their specific pyruvate decarboxylase activity was only reduced to 45% of the wild type level. Northern blot analysis revealed that a sequence in the yeast genome homologous to PDC1 and formerly designated as a possible pseudogene is expressed and may code for a different but closely related pyruvate decarboxylase. The products of the two PDC genes seem to form hybrid oligomers, however both homooligomers have enzyme activity. Thus, the product of the PDC1 gene is not absolutely neccessary for glucose fermentation in yeast.

Key words

Alcoholic fermentation Deletion mutant Pyruvate decarboxylase Yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett JA (1976) Adv Carbohydr Chem Biochem 32:125–234Google Scholar
  2. Beggs J (1978) Nature 275:447–452Google Scholar
  3. Broach JR (1983) Methods Enzymol 101:307–325Google Scholar
  4. Butler G, McConnell DJ (1988) Curr Genet 14:405–412Google Scholar
  5. Gounaris AD, Turkenkopf J, Civercha LL, Greenlie J (1975) Biochim Biophys Acta 405:492–499Google Scholar
  6. Grunstein M, Hogness DS (1975) Proc Natl Acad Sci USA 72:3961–3965Google Scholar
  7. Hohmann S (1987) Curr Genet 12:519–526Google Scholar
  8. Hopman RWF (1980) Eur J Biochem 110:311–318Google Scholar
  9. Kellermann E, Hollenberg CP (1988) Curr Genet 14:337–344Google Scholar
  10. Kellermann E, Seeboth PG, Hollenberg CP (1986) Nucleic Acids Res 14:8963–8977Google Scholar
  11. Kuo DJ, Dikdan G, Jordan F (1986) J Biol Chem 261:3316–3319Google Scholar
  12. Leuble J, Ullrich J (1986) Biol Chem Hoppe-Seyler Suppl 363 Abstr 06.03.39Google Scholar
  13. Maitra PK, Lobo Z (1971) J Biol Chem 246:475–488Google Scholar
  14. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  15. Neigeborn L, Schwartzberg P, Reid R, Carlson M (1986) Mol Cell Biol 6:3569–3574Google Scholar
  16. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  17. Schmitt HD (1983) Thesis phD Technische Hochschule DarmstadtGoogle Scholar
  18. Schmitt HD, Zimmermann FK (1982) J Bacteriol 151:1146–1152Google Scholar
  19. Schmitt HD, Ciriacy M, Zimmermann FK (1983) Mol Gen Genet 192:247–252Google Scholar
  20. Seehaus T, Rodicio R, Heinisch J, Aguilera A, Zimmermann FK (1985) Curr Genet 10:103–110Google Scholar
  21. Tautz D, Renz M (1983) Anal Biochem 132:14–19Google Scholar
  22. Ullrich J, Freisler H (1977) Hoppe-Seylers Z Physiol Chem 358:318Google Scholar
  23. Vieira J, Messing J (1982) Gene 19:259–268Google Scholar
  24. Zamenhoff S (1957) Methods Enzymol 3:696–704Google Scholar
  25. Zehender H (1984) Thesis phD Universität FreiburgGoogle Scholar
  26. Zehender H, Trescher D, Ullrich J (1987) Eur J Biochem 167:149–154Google Scholar
  27. Zimmermann FK, Schmiedt J, ten Berge AMA (1969) Mol Gen Genet 104:321–330Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Ine Schaaff
    • 1
  • Jeremy B. A. Green
    • 1
  • Daniel Gozalbo
    • 1
  • Stefan Hohmann
    • 1
  1. 1.Institut für Mikrobiologie, Technische Hochschule DarmstadtDarmstadtGermany
  2. 2.National Institute for Medical ResearchMill HillLondonUK

Personalised recommendations