Advertisement

Current Genetics

, Volume 12, Issue 4, pp 297–304 | Cite as

Cryptic DNA plasmids of the heterothallic yeast Saccharomycopsis crataegensis

  • Hurley S. Shepherd
  • James M. Ligon
  • Paul L. Bolen
  • Cletus P. Kurtzman
Original Articles

Summary

Three DNA plasmids, designated pScrl-1, pScrl-2, and pScrl-3 have been found in a strain of the heterothallic yeast Saccharomycopsis crataegensis (NRRL Y-5902). pScrl-l, -2 and -3 are, respectively, 15, 7, and 5 kilobase pairs (kbp) in size. Based on the results of exonuclease digestions, all three plasmids appear to be linear molecules with blocked 5′ ends. All three plasmids also have a lower buoyant density than does nuclear DNA of S. crataegensis. The two lower molecular weight plasmids hybridize strongly with one another, but only weakly to the higher molecular weight plasmid. Two of four related S. crataegensis strains surveyed were found to contain two plasmids that are of the same size as the two larger plasmids of Y-5902. Evidence is presented indicating that the plasmids in strain Y-5902 reside in the cytosol since they were found not to be located within the major organelles (mitochondria and nuclei).

Key words

Fungi S. crataegensis Yeast Plasmid Linear DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beggs JD (1978) Nature 275:104–109Google Scholar
  2. Bertrand H, Chan BS-S, Griffiths AJF (1985) Cell 41:877–884Google Scholar
  3. Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) Cell 47:829–837Google Scholar
  4. Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133Google Scholar
  5. Broach JR (1981) In: Strathern et al. (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 445–470Google Scholar
  6. Chase CD, Pring DR (1985) Plant Mol Biol 5:303–311Google Scholar
  7. Chase CD, Pring DR (1986) Plant Mol Biol 6:53–64Google Scholar
  8. Collins RA, Stohl LL, Cole MD, Lambowitz AM (1981) Cell 24:443–452Google Scholar
  9. Erickson L, Beversdorf WD, Pauls KP (1985) Curr Genet 9:679–682Google Scholar
  10. Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (eds) (1986) Plasmids of Eukaryotes. Springer, New York Berlin Heidelberg, pp 123Google Scholar
  11. Feinberg A, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  12. Garber RC, Yoder OC (1983) Anal Biochem 135:416–422Google Scholar
  13. Gronostajski RM, Sadowski PD (1985) J Biol Chem 260:12328–12335Google Scholar
  14. Gunge N, Murata K, Sakaguchi K (1982) J Bacteriol 151:462–464Google Scholar
  15. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) J Bacteriol 145:382–390Google Scholar
  16. Hansen BM, Marcker KA (1984) Nucleic Acids Res 12:4747–4756Google Scholar
  17. Kawamura M, Takagi M, Yano K (1983) Gene 24:157–162Google Scholar
  18. Kemble RS, Thompson RD (1982) Nucleic Acids Res 10:8181–8189Google Scholar
  19. Kikuchi Y, Hirai K, Hishinuma F (1984) Nucleic Acids Res 12:5685–5692Google Scholar
  20. Kojo H, Greenberg BD, Sugino A (1981) Proc Natl Acad Sci USA 78:7261–7265Google Scholar
  21. Levings CS, Kim BD, Pring DR, Conde MF, Mans RJ, Laughnan JR, Gabay-Laughnan SJ (1980) Science 209:1021–1023Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 545Google Scholar
  23. Marmur J (1961) J Mol Biol 3:208–218Google Scholar
  24. Müller W, Gautier F (1975) Eur J Biochem 54:385–394Google Scholar
  25. Nargang FE, Bell JB, Stahl LL, Lambowitz AM (1984) Cell 38:441–453Google Scholar
  26. Painting KA, Kirsop B (1984) J Appl Bacteriol 56:331–335Google Scholar
  27. Price CW, Fuson GB, Phaff HJ (1978) Microbiol Rev 42:161–193Google Scholar
  28. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  29. Rush MG, Misra R (1985) Plasmid 14:177–191Google Scholar
  30. Schildkraut CL, Marmur J, Doty P (1962) J Mol Biol 4:430–433Google Scholar
  31. Sor F, Fukuhara H (1985) Curr Genet 9:147–155Google Scholar
  32. Stam JC, Kwakman J, Meijer M, Stuitje AR (1986) Nucleic Acids Res 14:6871–6884Google Scholar
  33. Stark MJR, Mileham AJ, Romanos MA, Boyd A (1984) Nucleic Acids Res 12:6011–6030Google Scholar
  34. Stillman BW (1983) Cell 35:7–9Google Scholar
  35. Timberlake WE (1978) Science 202:973–975Google Scholar
  36. Toh-e A, Tada S, Oshima Y (1982) J Bacteriol 151:1380–1390Google Scholar
  37. Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687Google Scholar
  38. Wu R, Grossman L, Moldave K (eds) (1983) Methods in Enzymology, vol. 101, Recombinant DNA, part C. Academic, New York, pp 746Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Hurley S. Shepherd
    • 1
  • James M. Ligon
    • 2
  • Paul L. Bolen
    • 2
  • Cletus P. Kurtzman
    • 2
  1. 1.Southern Regional Research CenterNew OrleansUSA
  2. 2.Agricultural Research Service, U.S. Department of AgricultureNorthern Regional Research CenterPeoriaUSA

Personalised recommendations