Current Genetics

, Volume 12, Issue 4, pp 241–246 | Cite as

Functional in vivo verification in E. coli of promoter activities from the rDNA/tDNAVal(GAC) leader region of Zea mays chloroplasts

  • Gabriele Delp
  • Gabor L. Igloi
  • Christoph F. Beck
  • Hans Kössel
Original Articles


Restriction fragments containing upstream sequences of the rRNA operon from Zea mays chloroplasts were tested for promoter activity in vivo by insertion into an E. coli promoter-probe vector. The expression of this vector's reporter gene, which codes for alkaline phosphatase, was stimulated more than 1,500-fold upon linkage with the chloroplast rRNA promoter. Site specific mutagenesis of the invariant T of the −10 sequence of this promoter reduced the expression of the reporter gene to 2% of the wild type. This indicates that the chloroplast rRNA promoter, which directs transcriptional initiation 117 by upstream of the 16S rRNA gene, is also active in the bacterial system. A restriction fragment further upstream containing the gene for tRNAVal (GAC) also showed strong promoter activity (29% as compared with the rRNA promoter). This promoter activity probably reflects the chloroplast promoter directing the synthesis of the tRNAVal (GAC) primary transcript. Surprisingly, this restriction fragment also displayed promoter activity (13% compared with the rRNA promoter) in reverse orientation.

Key words

rRNA promoters Maize chloroplasts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briat JF, Dron M, Loiseaux S, Mache R (1982) Nucleic Acids Res 10:6865–6878Google Scholar
  2. Briat JF, Dron M, Mache R (1983) FEBS Lett 163:1–5Google Scholar
  3. Briat JF, Lescure AM, Mache R (1986) Biochimie 68:981–990Google Scholar
  4. Briat JF, Bisanz-Seyer C, Lescure AM (1987) Curr Genet 11: 259–263Google Scholar
  5. Dietrich G, Link G (1985) Curr Genet 9:683–692Google Scholar
  6. Gatenby AA, Castleton JA, Saul MW (1981) Nature 291:117–121Google Scholar
  7. Hawley DK, McClure WR (1983) Nucleic Acids Res 11:2237–2255Google Scholar
  8. Keus RJA, Dekker AF, van Roon MA, Groot GSP (1983) Nucleic Acids Res 11:6465–6474Google Scholar
  9. Kramer W, Drutsa V, Jansen HW, Kramer B, Pflugfelder M, Fritz HJ (1984) Nucleic Acids Res 12:9441–9455Google Scholar
  10. Kung SD, Lin CM (1985) Nucleic Acids Res 13:7543–7549Google Scholar
  11. Lescure AM, Bisanz-Seyer C, Pesey H, Mache R (1985) Nucleic Acids Res 13:8787–8796Google Scholar
  12. Messing J (1983) Methods Enzymol 101:20–78Google Scholar
  13. Messing J, Vieira J (1982) Gene 19;269–276Google Scholar
  14. Przybyl D, Fritzsche E, Edwards K, Kössel H, Falk H, Thompson JA, Link G (1984) Plant Mol Biol 3:147–158Google Scholar
  15. Schneider K, Beck CF (1986) Gene 42:37–48Google Scholar
  16. Schneider K, Beck CF (1987) Methods Enzymol 153 (in press)Google Scholar
  17. Schwarz Z, Kössel H (1980) Nature 283:739–742Google Scholar
  18. Schwarz Z, Kössel H, Schwarz E, Bogorad L (1981) Proc Natl Acad Sci USA 78:4748–4752Google Scholar
  19. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049Google Scholar
  20. Smith AJH (1980) Methods Enzymol 65:560–580Google Scholar
  21. Strittmatter G, Gozdzicka-Jozefïak A, Kössel H (1985) EMBO J 4:599–604Google Scholar
  22. Sun E, Shapiro DR, Wu BW, Tewari KK (1986) Plant Mol Biol 6:429–440Google Scholar
  23. Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34: 279–327Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gabriele Delp
    • 1
  • Gabor L. Igloi
    • 1
  • Christoph F. Beck
    • 1
  • Hans Kössel
    • 1
  1. 1.Institut für Biologie IIIUniversität FreiburgFreiburgGermany

Personalised recommendations